Cargando…

Arbutin and decrease of potentially toxic substances generated in human blood neutrophils

Neutrophils, highly motile phagocytic cells, constitute the first line of host defense and simultaneously they are considered to be central cells of chronic inflammation. In combination with standard therapeutic procedures, natural substances are gaining interest as an option for enhancing the effec...

Descripción completa

Detalles Bibliográficos
Autores principales: Pečivová, Jana, Nosál', Radomír, Sviteková, Klára, Mačičková, Tatiana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Slovak Toxicology Society SETOX 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436208/
https://www.ncbi.nlm.nih.gov/pubmed/26109900
http://dx.doi.org/10.2478/intox-2014-0028
Descripción
Sumario:Neutrophils, highly motile phagocytic cells, constitute the first line of host defense and simultaneously they are considered to be central cells of chronic inflammation. In combination with standard therapeutic procedures, natural substances are gaining interest as an option for enhancing the effectiveness of treatment of inflammatory diseases. We investigated the effect of arbutin and carvedilol and of their combination on 4β-phorbol-12β-myristate-13α-acetate- stimulated functions of human isolated neutrophils. Cells were preincubated with the drugs tested and subsequently stimulated. Superoxide (with or without blood platelets, in the rate close to physiological conditions [1:50]) and HOCl generation, elastase and myeloperoxidase release were determined spectrophotometrically and phospholipase D activation spectrofluorometrically. The combined effect of arbutin and carvedilol was found to be more effective than the effect of each compound alone. Our study provided evidence supporting the potential beneficial effect of arbutin alone or in combination with carvedilol in diminishing tissue damage by decreasing phospholipase D, myeloperoxidase and elastase activity and by attenuating the generation of superoxide and the subsequently derived reactive oxygen species. The presented data indicate the ability of arbutin to suppress the onset and progression of inflammation.