Cargando…
Adaptive Tensor-Based Principal Component Analysis for Low-Dose CT Image Denoising
Computed tomography (CT) has a revolutionized diagnostic radiology but involves large radiation doses that directly impact image quality. In this paper, we propose adaptive tensor-based principal component analysis (AT-PCA) algorithm for low-dose CT image denoising. Pixels in the image are presented...
Autores principales: | Ai, Danni, Yang, Jian, Fan, Jingfan, Cong, Weijian, Wang, Yongtian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436221/ https://www.ncbi.nlm.nih.gov/pubmed/25993566 http://dx.doi.org/10.1371/journal.pone.0126914 |
Ejemplares similares
-
Multiresolution generalized N dimension PCA for ultrasound image denoising
por: Ai, Danni, et al.
Publicado: (2014) -
Brain MR image denoising for Rician noise using pre-smooth non-local means filter
por: Yang, Jian, et al.
Publicado: (2015) -
Adaptively Tuned Iterative Low Dose CT Image Denoising
por: Hashemi, SayedMasoud, et al.
Publicado: (2015) -
Adaptive Ridge Point Refinement for Seeds Detection in X-Ray Coronary Angiogram
por: Xiao, Ruoxiu, et al.
Publicado: (2015) -
mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis
por: Zeng, Yanyan, et al.
Publicado: (2022)