Cargando…
Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster
Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 i...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436303/ https://www.ncbi.nlm.nih.gov/pubmed/25992709 http://dx.doi.org/10.1371/journal.pone.0126986 |
_version_ | 1782372052233093120 |
---|---|
author | Appel, Mirjam Scholz, Claus-Jürgen Müller, Tobias Dittrich, Marcus König, Christian Bockstaller, Marie Oguz, Tuba Khalili, Afshin Antwi-Adjei, Emmanuel Schauer, Tamas Margulies, Carla Tanimoto, Hiromu Yarali, Ayse |
author_facet | Appel, Mirjam Scholz, Claus-Jürgen Müller, Tobias Dittrich, Marcus König, Christian Bockstaller, Marie Oguz, Tuba Khalili, Afshin Antwi-Adjei, Emmanuel Schauer, Tamas Margulies, Carla Tanimoto, Hiromu Yarali, Ayse |
author_sort | Appel, Mirjam |
collection | PubMed |
description | Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/ or sequences co-varied with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance-associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hair-like organs distributed across the fly’s body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms. |
format | Online Article Text |
id | pubmed-4436303 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44363032015-05-27 Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster Appel, Mirjam Scholz, Claus-Jürgen Müller, Tobias Dittrich, Marcus König, Christian Bockstaller, Marie Oguz, Tuba Khalili, Afshin Antwi-Adjei, Emmanuel Schauer, Tamas Margulies, Carla Tanimoto, Hiromu Yarali, Ayse PLoS One Research Article Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/ or sequences co-varied with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance-associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hair-like organs distributed across the fly’s body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms. Public Library of Science 2015-05-18 /pmc/articles/PMC4436303/ /pubmed/25992709 http://dx.doi.org/10.1371/journal.pone.0126986 Text en © 2015 Appel et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Appel, Mirjam Scholz, Claus-Jürgen Müller, Tobias Dittrich, Marcus König, Christian Bockstaller, Marie Oguz, Tuba Khalili, Afshin Antwi-Adjei, Emmanuel Schauer, Tamas Margulies, Carla Tanimoto, Hiromu Yarali, Ayse Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster |
title | Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster
|
title_full | Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster
|
title_fullStr | Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster
|
title_full_unstemmed | Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster
|
title_short | Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster
|
title_sort | genome-wide association analyses point to candidate genes for electric shock avoidance in drosophila melanogaster |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436303/ https://www.ncbi.nlm.nih.gov/pubmed/25992709 http://dx.doi.org/10.1371/journal.pone.0126986 |
work_keys_str_mv | AT appelmirjam genomewideassociationanalysespointtocandidategenesforelectricshockavoidanceindrosophilamelanogaster AT scholzclausjurgen genomewideassociationanalysespointtocandidategenesforelectricshockavoidanceindrosophilamelanogaster AT mullertobias genomewideassociationanalysespointtocandidategenesforelectricshockavoidanceindrosophilamelanogaster AT dittrichmarcus genomewideassociationanalysespointtocandidategenesforelectricshockavoidanceindrosophilamelanogaster AT konigchristian genomewideassociationanalysespointtocandidategenesforelectricshockavoidanceindrosophilamelanogaster AT bockstallermarie genomewideassociationanalysespointtocandidategenesforelectricshockavoidanceindrosophilamelanogaster AT oguztuba genomewideassociationanalysespointtocandidategenesforelectricshockavoidanceindrosophilamelanogaster AT khaliliafshin genomewideassociationanalysespointtocandidategenesforelectricshockavoidanceindrosophilamelanogaster AT antwiadjeiemmanuel genomewideassociationanalysespointtocandidategenesforelectricshockavoidanceindrosophilamelanogaster AT schauertamas genomewideassociationanalysespointtocandidategenesforelectricshockavoidanceindrosophilamelanogaster AT marguliescarla genomewideassociationanalysespointtocandidategenesforelectricshockavoidanceindrosophilamelanogaster AT tanimotohiromu genomewideassociationanalysespointtocandidategenesforelectricshockavoidanceindrosophilamelanogaster AT yaraliayse genomewideassociationanalysespointtocandidategenesforelectricshockavoidanceindrosophilamelanogaster |