Cargando…
Individually Adapted Imagery Improves Brain-Computer Interface Performance in End-Users with Disability
Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns...
Autores principales: | Scherer, Reinhold, Faller, Josef, Friedrich, Elisabeth V. C., Opisso, Eloy, Costa, Ursula, Kübler, Andrea, Müller-Putz, Gernot R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436356/ https://www.ncbi.nlm.nih.gov/pubmed/25992718 http://dx.doi.org/10.1371/journal.pone.0123727 |
Ejemplares similares
-
A Co-Adaptive Brain-Computer Interface for End Users with Severe Motor Impairment
por: Faller, Josef, et al.
Publicado: (2014) -
Non-motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment
por: Faller, Josef, et al.
Publicado: (2014) -
Evaluation of Different EEG Acquisition Systems Concerning Their Suitability for Building a Brain–Computer Interface: Case Studies
por: Pinegger, Andreas, et al.
Publicado: (2016) -
Whatever Works: A Systematic User-Centered Training Protocol to Optimize Brain-Computer Interfacing Individually
por: Friedrich, Elisabeth V. C., et al.
Publicado: (2013) -
Exploration of the neural correlates of cerebral palsy for sensorimotor BCI control
por: Daly, Ian, et al.
Publicado: (2014)