Cargando…
Predicting Classifier Performance with Limited Training Data: Applications to Computer-Aided Diagnosis in Breast and Prostate Cancer
Clinical trials increasingly employ medical imaging data in conjunction with supervised classifiers, where the latter require large amounts of training data to accurately model the system. Yet, a classifier selected at the start of the trial based on smaller and more accessible datasets may yield in...
Autores principales: | Basavanhally, Ajay, Viswanath, Satish, Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436385/ https://www.ncbi.nlm.nih.gov/pubmed/25993029 http://dx.doi.org/10.1371/journal.pone.0117900 |
Ejemplares similares
-
Discriminative Scale Learning (DiScrn): Applications to Prostate Cancer Detection from MRI and Needle Biopsies
por: Wang, Haibo, et al.
Publicado: (2017) -
Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: a multi-site study
por: Viswanath, Satish E., et al.
Publicado: (2019) -
Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data
por: Viswanath, Satish, et al.
Publicado: (2012) -
Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: Comparison to Oncotype DX
por: Basavanhally, Ajay, et al.
Publicado: (2012) -
Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI
por: Shiradkar, Rakesh, et al.
Publicado: (2016)