Cargando…
Multi-Instance Multilabel Learning with Weak-Label for Predicting Protein Function in Electricigens
Nature often brings several domains together to form multidomain and multifunctional proteins with a vast number of possibilities. In our previous study, we disclosed that the protein function prediction problem is naturally and inherently Multi-Instance Multilabel (MIML) learning tasks. Automated p...
Autores principales: | Wu, Jian-Sheng, Hu, Hai-Feng, Yan, Shan-Cheng, Tang, Li-Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436452/ https://www.ncbi.nlm.nih.gov/pubmed/26075251 http://dx.doi.org/10.1155/2015/619438 |
Ejemplares similares
-
Augmenting Multi-Instance Multilabel Learning with Sparse Bayesian Models for Skin Biopsy Image Analysis
por: Zhang, Gang, et al.
Publicado: (2014) -
Predicting and Interpreting the Structure of Type IV Pilus of Electricigens by Molecular Dynamics Simulations
por: Shu, Chuanjun, et al.
Publicado: (2017) -
Colorectal cancer lymph node metastasis prediction with weakly supervised transformer-based multi-instance learning
por: Tan, Luxin, et al.
Publicado: (2023) -
Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities
por: Cao, Yujin, et al.
Publicado: (2019) -
Multi-Population Genetic Algorithm for Multilabel Feature Selection Based on Label Complementary Communication
por: Park, Jaegyun, et al.
Publicado: (2020)