Cargando…

CREB Regulates Experience-Dependent Spine Formation and Enlargement in Mouse Barrel Cortex

Experience modifies synaptic connectivity through processes that involve dendritic spine rearrangements in neuronal circuits. Although cAMP response element binding protein (CREB) has a key function in spines changes, its role in activity-dependent rearrangements in brain regions of rodents interact...

Descripción completa

Detalles Bibliográficos
Autores principales: Pignataro, Annabella, Borreca, Antonella, Ammassari-Teule, Martine, Middei, Silvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436461/
https://www.ncbi.nlm.nih.gov/pubmed/26075101
http://dx.doi.org/10.1155/2015/651469
Descripción
Sumario:Experience modifies synaptic connectivity through processes that involve dendritic spine rearrangements in neuronal circuits. Although cAMP response element binding protein (CREB) has a key function in spines changes, its role in activity-dependent rearrangements in brain regions of rodents interacting with the surrounding environment has received little attention so far. Here we studied the effects of vibrissae trimming, a widely used model of sensory deprivation-induced cortical plasticity, on processes associated with dendritic spine rearrangements in the barrel cortex of a transgenic mouse model of CREB downregulation (mCREB mice). We found that sensory deprivation through prolonged whisker trimming leads to an increased number of thin spines in the layer V of related barrel cortex (Contra) in wild type but not mCREB mice. In the barrel field controlling spared whiskers (Ipsi), the same trimming protocol results in a CREB-dependent enlargement of dendritic spines. Last, we demonstrated that CREB regulates structural rearrangements of synapses that associate with dynamic changes of dendritic spines. Our findings suggest that CREB plays a key role in dendritic spine dynamics and synaptic circuits rearrangements that account for new brain connectivity in response to changes in the environment.