Cargando…
Optimization and planning of operating theatre activities: an original definition of pathways and process modeling
BACKGROUND: The Operating Room (OR) is a key resource of all major hospitals, but it also accounts for up 40 % of resource costs. Improving cost effectiveness, while maintaining a quality of care, is a universal objective. These goals imply an optimization of planning and a scheduling of the activit...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436841/ https://www.ncbi.nlm.nih.gov/pubmed/25982033 http://dx.doi.org/10.1186/s12911-015-0161-7 |
Sumario: | BACKGROUND: The Operating Room (OR) is a key resource of all major hospitals, but it also accounts for up 40 % of resource costs. Improving cost effectiveness, while maintaining a quality of care, is a universal objective. These goals imply an optimization of planning and a scheduling of the activities involved. This is highly challenging due to the inherent variable and unpredictable nature of surgery. METHODS: A Business Process Modeling Notation (BPMN 2.0) was used for the representation of the “OR Process” (being defined as the sequence of all of the elementary steps between “patient ready for surgery” to “patient operated upon”) as a general pathway (“path”). The path was then both further standardized as much as possible and, at the same time, keeping all of the key-elements that would allow one to address or define the other steps of planning, and the inherent and wide variability in terms of patient specificity. The path was used to schedule OR activity, room-by-room, and day-by-day, feeding the process from a “waiting list database” and using a mathematical optimization model with the objective of ending up in an optimized planning. RESULTS: The OR process was defined with special attention paid to flows, timing and resource involvement. Standardization involved a dynamics operation and defined an expected operating time for each operation. The optimization model has been implemented and tested on real clinical data. The comparison of the results reported with the real data, shows that by using the optimization model, allows for the scheduling of about 30 % more patients than in actual practice, as well as to better exploit the OR efficiency, increasing the average operating room utilization rate up to 20 %. CONCLUSIONS: The optimization of OR activity planning is essential in order to manage the hospital’s waiting list. Optimal planning is facilitated by defining the operation as a standard pathway where all variables are taken into account. By allowing a precise scheduling, it feeds the process of planning and, further up-stream, the management of a waiting list in an interactive and bi-directional dynamic process. |
---|