Cargando…

Antidiabetic and antioxidant activities of ethanolic extract of Semecarpus anacardium (Linn.) bark

BACKGROUND: Diabetes mellitus is a global health problem and constantly increasing day by day. The number of diabetic people in world is expected to rise to 366 million in 2030. The available drugs for diabetes, insulin or oral hypoglycemic agents have one or more side effects and search for new ant...

Descripción completa

Detalles Bibliográficos
Autores principales: Ali, Md Ashraf, Wahed, Mir Imam Ibne, Khatune, Naznin Ara, Rahman, Bytul Mokaddesur, Barman, Ranjan Kumar, Islam, Md Rafiqul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436845/
https://www.ncbi.nlm.nih.gov/pubmed/25925864
http://dx.doi.org/10.1186/s12906-015-0662-z
Descripción
Sumario:BACKGROUND: Diabetes mellitus is a global health problem and constantly increasing day by day. The number of diabetic people in world is expected to rise to 366 million in 2030. The available drugs for diabetes, insulin or oral hypoglycemic agents have one or more side effects and search for new antidiabetic drugs with minimal or no side effects from medicinal plants is a challenging for us. The present study was undertaken to investigate the antidiabetic and antioxidant activity of Semecarpus anacardium (Linn.) (abbreviated as SF). METHODS: The antidiabetic activity was determined by using alloxan-induced diabetic rats. After 15 days of treatment, serum biochemical parameters such as TC, TG, LDL, HDL, SGOT and SGPT were estimated. The survival rate, body weight, organ weight, liver glycogen and blood parameters (RBC and Hb) were also measured. The antioxidant activity was measured by DPPH free radical scavenging assay. Phytochemical screening, total phenolic and total flavonoid content were determined by using standard methods. RESULTS: The results showed that the survival rate was 100% in rats of Group SA 400. The effect of extract on blood glucose level in Groups SA 100, SA 200 and SA 400 were dose-dependent throughout the treatment period. No significant changes in organ weight to body weight ratio were observed, liver weights significantly improved in Groups SA 200 and SA 400. The bark extract exhibited significant (p < 0.05) anti-diabetic activity with lowering TC, TG, LDL level dose-dependently and protected liver which may be partially explained by attenuation of SGOT and SGPT levels and increases liver glycogen. The percentage of Hb and RBC counts were negatively correlated with the doses of extracts. In DPPH scavenging assay, IC(50) values of SA extract and ascorbic acid were found 72.24 μg/ml and 17.81 μg/ml, respectively. Phytochemical screening showed the presence of steroids, triterpenoids, flavonoids, glycosides, saponins, and tannins that were contribute to biological activity. CONCLUSIONS: These results indicated that stem barks of S. anacardium possess strong anti-diabetic and antioxidant potentials and support traditional medicinal use for the treatment of diabetes mellitus and good source for natural antioxidants.