Cargando…

Eutectic Nano-Droplet Template Injection into Bulk Silicon to Construct Porous Frameworks with Concomitant Conformal Coating as Anodes for Li-Ion Batteries

Building porosity in monolithic materials is highly desired to design 3D electrodes, however ex-situ introduction or in-situ generation of nano-scale sacrificial template is still a great challenge. Here Al-Si eutectic droplet templates are uniformly injected into bulk Si through Al-induced solid-so...

Descripción completa

Detalles Bibliográficos
Autores principales: Qu, Fei, Li, Chilin, Wang, Zumin, Wen, Yuren, Richter, Gunther, Strunk, Horst P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4437372/
https://www.ncbi.nlm.nih.gov/pubmed/25988370
http://dx.doi.org/10.1038/srep10381
Descripción
Sumario:Building porosity in monolithic materials is highly desired to design 3D electrodes, however ex-situ introduction or in-situ generation of nano-scale sacrificial template is still a great challenge. Here Al-Si eutectic droplet templates are uniformly injected into bulk Si through Al-induced solid-solid convection to construct a highly porous Si framework. This process is concomitant with process-inherent conformal coating of ion-conductive oxide. Such an all-in-one method has generated a (continuously processed) high-capacity Si anode integrating longevity and stable electrolyte-anode diaphragm for Li-ion batteries (e.g. a reversible capacity as large as ~1800 mAh/g or ~350 μAh/cm(2)-μm with a CE of ~99% at 0.1 C after long-term 400 cycles).