Cargando…
Cariogenicity of Streptococcus mutans Glucan-Binding Protein Deletion Mutants
Streptococcus mutans is a principal etiologic agent in the development of dental caries due to its exceptional aciduric and acidogenic properties, and its ability to adhere and accumulate in large numbers on tooth surfaces in the presence of sucrose. Sucrose-dependent adherence is mediated by glucan...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4437697/ https://www.ncbi.nlm.nih.gov/pubmed/24390015 |
_version_ | 1782372247649910784 |
---|---|
author | Lynch, David J Michalek, Suzanne M Zhu, Min Drake, David Qian, Fang Banas, Jeffrey A |
author_facet | Lynch, David J Michalek, Suzanne M Zhu, Min Drake, David Qian, Fang Banas, Jeffrey A |
author_sort | Lynch, David J |
collection | PubMed |
description | Streptococcus mutans is a principal etiologic agent in the development of dental caries due to its exceptional aciduric and acidogenic properties, and its ability to adhere and accumulate in large numbers on tooth surfaces in the presence of sucrose. Sucrose-dependent adherence is mediated by glucans, polymers of glucose synthesized from sucrose by glucosyltransferase (Gtf) enzymes. S. mutans makes several proteins that have the property of binding glucans. We hypothesized that three of these glucan-binding proteins (Gbps), Gbps A, C and D, contribute to the cariogenicity of S. mutans. A specific pathogen-free rat model was used to compare the cariogenicity of S. mutans UA130 and a panel of mutants with individual or multiple gbp gene deletions. The mutants were also evaluated in vitro for properties related to cariogenicity, such as acidogenicity, aciduricity, and adhesion to glucan. Only a subset of Gbp mutants were attenuated for cariogenicity, with the combined loss of Gbps A and C most affecting smooth surface caries. The attenuation of Gbp mutant strains was unlikely due to differences in acid-related properties since the mutants were at least as acidogenic and acid-tolerant as the parental strain. Additionally, loss of Gbps did not reduce adhesion to a pre-formed biofilm of S. sanguinis. Analyses of the caries data with in vitro biofilm properties previously determined for the mutant panel found correlations between cariogenicity and biofilm depth and substratum coverage. It is concluded that Gbps contribute to the cariogenicity of S. mutans through a mechanism that may involve alteration of biofilm architecture. |
format | Online Article Text |
id | pubmed-4437697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
record_format | MEDLINE/PubMed |
spelling | pubmed-44376972015-05-19 Cariogenicity of Streptococcus mutans Glucan-Binding Protein Deletion Mutants Lynch, David J Michalek, Suzanne M Zhu, Min Drake, David Qian, Fang Banas, Jeffrey A Oral Health Dent Manag Article Streptococcus mutans is a principal etiologic agent in the development of dental caries due to its exceptional aciduric and acidogenic properties, and its ability to adhere and accumulate in large numbers on tooth surfaces in the presence of sucrose. Sucrose-dependent adherence is mediated by glucans, polymers of glucose synthesized from sucrose by glucosyltransferase (Gtf) enzymes. S. mutans makes several proteins that have the property of binding glucans. We hypothesized that three of these glucan-binding proteins (Gbps), Gbps A, C and D, contribute to the cariogenicity of S. mutans. A specific pathogen-free rat model was used to compare the cariogenicity of S. mutans UA130 and a panel of mutants with individual or multiple gbp gene deletions. The mutants were also evaluated in vitro for properties related to cariogenicity, such as acidogenicity, aciduricity, and adhesion to glucan. Only a subset of Gbp mutants were attenuated for cariogenicity, with the combined loss of Gbps A and C most affecting smooth surface caries. The attenuation of Gbp mutant strains was unlikely due to differences in acid-related properties since the mutants were at least as acidogenic and acid-tolerant as the parental strain. Additionally, loss of Gbps did not reduce adhesion to a pre-formed biofilm of S. sanguinis. Analyses of the caries data with in vitro biofilm properties previously determined for the mutant panel found correlations between cariogenicity and biofilm depth and substratum coverage. It is concluded that Gbps contribute to the cariogenicity of S. mutans through a mechanism that may involve alteration of biofilm architecture. 2013-12 /pmc/articles/PMC4437697/ /pubmed/24390015 Text en Copyright: © 2013 Lynch DJ, et al. http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Article Lynch, David J Michalek, Suzanne M Zhu, Min Drake, David Qian, Fang Banas, Jeffrey A Cariogenicity of Streptococcus mutans Glucan-Binding Protein Deletion Mutants |
title | Cariogenicity of Streptococcus mutans Glucan-Binding Protein Deletion Mutants |
title_full | Cariogenicity of Streptococcus mutans Glucan-Binding Protein Deletion Mutants |
title_fullStr | Cariogenicity of Streptococcus mutans Glucan-Binding Protein Deletion Mutants |
title_full_unstemmed | Cariogenicity of Streptococcus mutans Glucan-Binding Protein Deletion Mutants |
title_short | Cariogenicity of Streptococcus mutans Glucan-Binding Protein Deletion Mutants |
title_sort | cariogenicity of streptococcus mutans glucan-binding protein deletion mutants |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4437697/ https://www.ncbi.nlm.nih.gov/pubmed/24390015 |
work_keys_str_mv | AT lynchdavidj cariogenicityofstreptococcusmutansglucanbindingproteindeletionmutants AT michaleksuzannem cariogenicityofstreptococcusmutansglucanbindingproteindeletionmutants AT zhumin cariogenicityofstreptococcusmutansglucanbindingproteindeletionmutants AT drakedavid cariogenicityofstreptococcusmutansglucanbindingproteindeletionmutants AT qianfang cariogenicityofstreptococcusmutansglucanbindingproteindeletionmutants AT banasjeffreya cariogenicityofstreptococcusmutansglucanbindingproteindeletionmutants |