Cargando…
Neuroprotective effects of Eucommia ulmoides Oliv. and its bioactive constituent work via ameliorating the ubiquitin-proteasome system
BACKGROUND: Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by a loss of dopaminergic neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. The purpose of this study was to investigate potential in vivo pr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438574/ https://www.ncbi.nlm.nih.gov/pubmed/25994206 http://dx.doi.org/10.1186/s12906-015-0675-7 |
Sumario: | BACKGROUND: Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by a loss of dopaminergic neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. The purpose of this study was to investigate potential in vivo protective effects of Duzhong against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as well as the bioactive constituents against 1-methyl-4-phenylpyridinium (MPP(+)) toxicity in vitro. METHODS: Male C57BL/6 mice were intraperitoneally administrated five consecutive injections of MPTP every 24 h at a dose of 30 mg/kg to induce an in vivo PD model. Pole and traction tests were performed in mice to evaluate motor deficits and bradykinesia after the final MPTP administration. The striatal levels of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanilic acid, were measured using a High-performance liquid chromatography-electrical conductivity detector. To further explore the bioactive constituents and protective mechanisms of Duzhong, seven compounds from Duzhong were tested on MPP(+)-treated SH-SY5Y cell lines in vitro. A proteasome enzymatic assay and Cell Counting Kit-8 were performed to examine proteasomal activity and cell viability of Duzhong-treated cells, respectively, after exposure to MPP(+) and proteasome inhibitor MG132. RESULTS: Duzhong antagonized the loss of striatal neurotransmitters and relieved the associated anomaly in ambulatory locomotor activity in PD mice after a 3-day pre-treatment of Duzhong crude extract. The five Duzhong compounds attenuated MPP(+)-induced dysfunction of protease activity and reduced MG132-induced cytotoxicity. CONCLUSION: Duzhong could serve as a potential candidate for PD treatment, and its mechanism involves the amelioration of the ubiquitin-proteasome system. |
---|