Cargando…

Evaluation of in vivo responses of sorafenib therapy in a preclinical mouse model of PTEN-deficient of prostate cancer

BACKGROUND: Despite recent advances in the treatment for advanced prostate cancer, outcomes remain poor. This lack of efficacy has prompted the development of alternative treatment strategies. In the present study we investigate the effects of the multikinase inhibitor sorafenib in a genetically eng...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamamoto, Yutaka, De Velasco, Marco A, Kura, Yurie, Nozawa, Masahiro, Hatanaka, Yuji, Oki, Takashi, Ozeki, Takayuki, Shimizu, Nobutaka, Minami, Takafumi, Yoshimura, Kazuhiro, Yoshikawa, Kazuhiro, Nishio, Kazuto, Uemura, Hirotsugu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438623/
https://www.ncbi.nlm.nih.gov/pubmed/25953027
http://dx.doi.org/10.1186/s12967-015-0509-x
_version_ 1782372369018388480
author Yamamoto, Yutaka
De Velasco, Marco A
Kura, Yurie
Nozawa, Masahiro
Hatanaka, Yuji
Oki, Takashi
Ozeki, Takayuki
Shimizu, Nobutaka
Minami, Takafumi
Yoshimura, Kazuhiro
Yoshikawa, Kazuhiro
Nishio, Kazuto
Uemura, Hirotsugu
author_facet Yamamoto, Yutaka
De Velasco, Marco A
Kura, Yurie
Nozawa, Masahiro
Hatanaka, Yuji
Oki, Takashi
Ozeki, Takayuki
Shimizu, Nobutaka
Minami, Takafumi
Yoshimura, Kazuhiro
Yoshikawa, Kazuhiro
Nishio, Kazuto
Uemura, Hirotsugu
author_sort Yamamoto, Yutaka
collection PubMed
description BACKGROUND: Despite recent advances in the treatment for advanced prostate cancer, outcomes remain poor. This lack of efficacy has prompted the development of alternative treatment strategies. In the present study we investigate the effects of the multikinase inhibitor sorafenib in a genetically engineered mouse model of prostate cancer and explore the rational combination with the mTOR inhibitor everolimus. METHODS: Conditional prostate specific PTEN-deficient knockout mice were utilized to determine the pharmacodynamic and chemopreventive effects of sorafenib. This mouse model was also used to examine the therapeutic efficacy of sorafenib alone or in combination with everolimus. Preclinical efficacy was assessed by comparing the reduction of tumor burden, proliferation, angiogenesis and the induction of apoptosis. Molecular responses were assessed by immunohistochemical, TUNEL and western blot assays. RESULTS: Pharmacodynamic analysis revealed that a single dose of sorafenib decreased activation of the PI3K/AKT/mTOR signaling axis at doses of 30–60 mg/kg, but activated JAK/STAT3 signaling. Levels of cleaved casapase-3 increased in a dose dependent manner. Chemoprevention studies showed that chronic sorafenib administration was capable of inhibiting tumor progression through the reduction of cancer cell proliferation, angiogenesis and the induction of apoptosis. In intervention models of established castration-naïve and castration-resistant prostate cancer, treatment with sorafenib provided modest but statistically insignificant reduction in tumor burden. However, sorafenib significantly inhibited cancer cell proliferation and MVD but had minimal effects on the induction of apoptosis. Interestingly, the administration of sorafenib increased the expression levels of the androgen receptor, p-GSK3β and p-ERK1/2 in castration-resistant prostate cancers. In both intervention models, combination therapy demonstrated a clear tendency of enhanced antitumor effects over monotherapy. Notably, the treatment combination of sorafenib and everolimus overcame therapeutic escape from single agent therapy in castration-resistant prostate cancers. CONCLUSIONS: In summary, we provide insights into the molecular responses of sorafenib therapy in a clinically relevant model of prostate cancer and present preclinical evidence for the development of targeted treatment strategies based on the use of multikinase inhibitors in combination with mTOR inhibitors for the treatment of advanced prostate cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0509-x) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4438623
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-44386232015-05-21 Evaluation of in vivo responses of sorafenib therapy in a preclinical mouse model of PTEN-deficient of prostate cancer Yamamoto, Yutaka De Velasco, Marco A Kura, Yurie Nozawa, Masahiro Hatanaka, Yuji Oki, Takashi Ozeki, Takayuki Shimizu, Nobutaka Minami, Takafumi Yoshimura, Kazuhiro Yoshikawa, Kazuhiro Nishio, Kazuto Uemura, Hirotsugu J Transl Med Research BACKGROUND: Despite recent advances in the treatment for advanced prostate cancer, outcomes remain poor. This lack of efficacy has prompted the development of alternative treatment strategies. In the present study we investigate the effects of the multikinase inhibitor sorafenib in a genetically engineered mouse model of prostate cancer and explore the rational combination with the mTOR inhibitor everolimus. METHODS: Conditional prostate specific PTEN-deficient knockout mice were utilized to determine the pharmacodynamic and chemopreventive effects of sorafenib. This mouse model was also used to examine the therapeutic efficacy of sorafenib alone or in combination with everolimus. Preclinical efficacy was assessed by comparing the reduction of tumor burden, proliferation, angiogenesis and the induction of apoptosis. Molecular responses were assessed by immunohistochemical, TUNEL and western blot assays. RESULTS: Pharmacodynamic analysis revealed that a single dose of sorafenib decreased activation of the PI3K/AKT/mTOR signaling axis at doses of 30–60 mg/kg, but activated JAK/STAT3 signaling. Levels of cleaved casapase-3 increased in a dose dependent manner. Chemoprevention studies showed that chronic sorafenib administration was capable of inhibiting tumor progression through the reduction of cancer cell proliferation, angiogenesis and the induction of apoptosis. In intervention models of established castration-naïve and castration-resistant prostate cancer, treatment with sorafenib provided modest but statistically insignificant reduction in tumor burden. However, sorafenib significantly inhibited cancer cell proliferation and MVD but had minimal effects on the induction of apoptosis. Interestingly, the administration of sorafenib increased the expression levels of the androgen receptor, p-GSK3β and p-ERK1/2 in castration-resistant prostate cancers. In both intervention models, combination therapy demonstrated a clear tendency of enhanced antitumor effects over monotherapy. Notably, the treatment combination of sorafenib and everolimus overcame therapeutic escape from single agent therapy in castration-resistant prostate cancers. CONCLUSIONS: In summary, we provide insights into the molecular responses of sorafenib therapy in a clinically relevant model of prostate cancer and present preclinical evidence for the development of targeted treatment strategies based on the use of multikinase inhibitors in combination with mTOR inhibitors for the treatment of advanced prostate cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0509-x) contains supplementary material, which is available to authorized users. BioMed Central 2015-05-08 /pmc/articles/PMC4438623/ /pubmed/25953027 http://dx.doi.org/10.1186/s12967-015-0509-x Text en © Yamamoto et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Yamamoto, Yutaka
De Velasco, Marco A
Kura, Yurie
Nozawa, Masahiro
Hatanaka, Yuji
Oki, Takashi
Ozeki, Takayuki
Shimizu, Nobutaka
Minami, Takafumi
Yoshimura, Kazuhiro
Yoshikawa, Kazuhiro
Nishio, Kazuto
Uemura, Hirotsugu
Evaluation of in vivo responses of sorafenib therapy in a preclinical mouse model of PTEN-deficient of prostate cancer
title Evaluation of in vivo responses of sorafenib therapy in a preclinical mouse model of PTEN-deficient of prostate cancer
title_full Evaluation of in vivo responses of sorafenib therapy in a preclinical mouse model of PTEN-deficient of prostate cancer
title_fullStr Evaluation of in vivo responses of sorafenib therapy in a preclinical mouse model of PTEN-deficient of prostate cancer
title_full_unstemmed Evaluation of in vivo responses of sorafenib therapy in a preclinical mouse model of PTEN-deficient of prostate cancer
title_short Evaluation of in vivo responses of sorafenib therapy in a preclinical mouse model of PTEN-deficient of prostate cancer
title_sort evaluation of in vivo responses of sorafenib therapy in a preclinical mouse model of pten-deficient of prostate cancer
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438623/
https://www.ncbi.nlm.nih.gov/pubmed/25953027
http://dx.doi.org/10.1186/s12967-015-0509-x
work_keys_str_mv AT yamamotoyutaka evaluationofinvivoresponsesofsorafenibtherapyinapreclinicalmousemodelofptendeficientofprostatecancer
AT develascomarcoa evaluationofinvivoresponsesofsorafenibtherapyinapreclinicalmousemodelofptendeficientofprostatecancer
AT kurayurie evaluationofinvivoresponsesofsorafenibtherapyinapreclinicalmousemodelofptendeficientofprostatecancer
AT nozawamasahiro evaluationofinvivoresponsesofsorafenibtherapyinapreclinicalmousemodelofptendeficientofprostatecancer
AT hatanakayuji evaluationofinvivoresponsesofsorafenibtherapyinapreclinicalmousemodelofptendeficientofprostatecancer
AT okitakashi evaluationofinvivoresponsesofsorafenibtherapyinapreclinicalmousemodelofptendeficientofprostatecancer
AT ozekitakayuki evaluationofinvivoresponsesofsorafenibtherapyinapreclinicalmousemodelofptendeficientofprostatecancer
AT shimizunobutaka evaluationofinvivoresponsesofsorafenibtherapyinapreclinicalmousemodelofptendeficientofprostatecancer
AT minamitakafumi evaluationofinvivoresponsesofsorafenibtherapyinapreclinicalmousemodelofptendeficientofprostatecancer
AT yoshimurakazuhiro evaluationofinvivoresponsesofsorafenibtherapyinapreclinicalmousemodelofptendeficientofprostatecancer
AT yoshikawakazuhiro evaluationofinvivoresponsesofsorafenibtherapyinapreclinicalmousemodelofptendeficientofprostatecancer
AT nishiokazuto evaluationofinvivoresponsesofsorafenibtherapyinapreclinicalmousemodelofptendeficientofprostatecancer
AT uemurahirotsugu evaluationofinvivoresponsesofsorafenibtherapyinapreclinicalmousemodelofptendeficientofprostatecancer