Cargando…
Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia
Somatostatin (SST) is a neuromodulator which is abundant throughout the central nervous system (CNS) and has a crucial role in neurodegenerative disorders. However, little is known about the effects and mechanisms of SST in dopaminergic (DA) neurons in the context of Parkinson’s disease (PD). In the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438927/ https://www.ncbi.nlm.nih.gov/pubmed/25777539 http://dx.doi.org/10.3892/mmr.2015.3494 |
_version_ | 1782372419772612608 |
---|---|
author | BAI, LIJUAN ZHANG, XIQUE LI, XIAOHONG LIU, NA LOU, FAN MA, HONGLEI LUO, XIAOGUANG REN, YAN |
author_facet | BAI, LIJUAN ZHANG, XIQUE LI, XIAOHONG LIU, NA LOU, FAN MA, HONGLEI LUO, XIAOGUANG REN, YAN |
author_sort | BAI, LIJUAN |
collection | PubMed |
description | Somatostatin (SST) is a neuromodulator which is abundant throughout the central nervous system (CNS) and has a crucial role in neurodegenerative disorders. However, little is known about the effects and mechanisms of SST in dopaminergic (DA) neurons in the context of Parkinson’s disease (PD). In the present study, a model of PD was generated by injecting lipopolysaccharide (LPS) into the substantia nigra (SN) of rats in order to investigate the effects of SST on LPS-induced degeneration of DA in vivo. Intramural injection of LPS resulted in a significant loss of DA neurons, while reduction of neuronal death by SST pretreatment was confirmed using immunohistochemical staining for tyrosine hydroxylase and Nissl. In parallel, immunohistochemical detection of OX-42 and hydroethidine staining were employed to determine the activation of microglia and production of reactive oxygen species (ROS), respectively. It was found that SST inhibited the LPS-induced microglial activity and ROS production. ELISA revealed a decreased production of pro-inflammatory mediators, including tumor necrosis factor-α, interleukin-1β and prostaglandin E2 when SST was administered prior to LPS treatment. Western blot analysis showed that LPS-induced expression of inducible nitric oxide synthase, cyclooxygenase-2 and nuclear factor κB (NF-κB) p-p65 was attenuated by administration of SST prior to LPS application. The results indicated that LPS-induced loss of nigral DA neurons was inhibited by SST and the observed effects of SST on neuroprotection were associated with suppression of microglial activation and the NF-κB pathway, ensuing decreases of neuroinflammation and oxidative stress. The present study therefore suggested that SST is beneficial for treating neurodegenerative diseases, such as PD, through inhibiting the activation of microglia. |
format | Online Article Text |
id | pubmed-4438927 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-44389272015-06-05 Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia BAI, LIJUAN ZHANG, XIQUE LI, XIAOHONG LIU, NA LOU, FAN MA, HONGLEI LUO, XIAOGUANG REN, YAN Mol Med Rep Articles Somatostatin (SST) is a neuromodulator which is abundant throughout the central nervous system (CNS) and has a crucial role in neurodegenerative disorders. However, little is known about the effects and mechanisms of SST in dopaminergic (DA) neurons in the context of Parkinson’s disease (PD). In the present study, a model of PD was generated by injecting lipopolysaccharide (LPS) into the substantia nigra (SN) of rats in order to investigate the effects of SST on LPS-induced degeneration of DA in vivo. Intramural injection of LPS resulted in a significant loss of DA neurons, while reduction of neuronal death by SST pretreatment was confirmed using immunohistochemical staining for tyrosine hydroxylase and Nissl. In parallel, immunohistochemical detection of OX-42 and hydroethidine staining were employed to determine the activation of microglia and production of reactive oxygen species (ROS), respectively. It was found that SST inhibited the LPS-induced microglial activity and ROS production. ELISA revealed a decreased production of pro-inflammatory mediators, including tumor necrosis factor-α, interleukin-1β and prostaglandin E2 when SST was administered prior to LPS treatment. Western blot analysis showed that LPS-induced expression of inducible nitric oxide synthase, cyclooxygenase-2 and nuclear factor κB (NF-κB) p-p65 was attenuated by administration of SST prior to LPS application. The results indicated that LPS-induced loss of nigral DA neurons was inhibited by SST and the observed effects of SST on neuroprotection were associated with suppression of microglial activation and the NF-κB pathway, ensuing decreases of neuroinflammation and oxidative stress. The present study therefore suggested that SST is beneficial for treating neurodegenerative diseases, such as PD, through inhibiting the activation of microglia. D.A. Spandidos 2015-07 2015-03-13 /pmc/articles/PMC4438927/ /pubmed/25777539 http://dx.doi.org/10.3892/mmr.2015.3494 Text en Copyright © 2015, Spandidos Publications http://creativecommons.org/licenses/by/3.0 This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Articles BAI, LIJUAN ZHANG, XIQUE LI, XIAOHONG LIU, NA LOU, FAN MA, HONGLEI LUO, XIAOGUANG REN, YAN Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia |
title | Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia |
title_full | Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia |
title_fullStr | Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia |
title_full_unstemmed | Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia |
title_short | Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia |
title_sort | somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438927/ https://www.ncbi.nlm.nih.gov/pubmed/25777539 http://dx.doi.org/10.3892/mmr.2015.3494 |
work_keys_str_mv | AT bailijuan somatostatinpreventslipopolysaccharideinducedneurodegenerationintheratsubstantianigrabyinhibitingtheactivationofmicroglia AT zhangxique somatostatinpreventslipopolysaccharideinducedneurodegenerationintheratsubstantianigrabyinhibitingtheactivationofmicroglia AT lixiaohong somatostatinpreventslipopolysaccharideinducedneurodegenerationintheratsubstantianigrabyinhibitingtheactivationofmicroglia AT liuna somatostatinpreventslipopolysaccharideinducedneurodegenerationintheratsubstantianigrabyinhibitingtheactivationofmicroglia AT loufan somatostatinpreventslipopolysaccharideinducedneurodegenerationintheratsubstantianigrabyinhibitingtheactivationofmicroglia AT mahonglei somatostatinpreventslipopolysaccharideinducedneurodegenerationintheratsubstantianigrabyinhibitingtheactivationofmicroglia AT luoxiaoguang somatostatinpreventslipopolysaccharideinducedneurodegenerationintheratsubstantianigrabyinhibitingtheactivationofmicroglia AT renyan somatostatinpreventslipopolysaccharideinducedneurodegenerationintheratsubstantianigrabyinhibitingtheactivationofmicroglia |