Cargando…
Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA
Discovery and characterization of functional RNA structures remains challenging due to deficiencies in de novo secondary structure modeling. Here we describe a dynamic programming approach for model-free sequence comparison that incorporates high-throughput chemical probing data. Based on SHAPE prob...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438973/ https://www.ncbi.nlm.nih.gov/pubmed/25992778 http://dx.doi.org/10.1371/journal.pcbi.1004126 |
_version_ | 1782372431152807936 |
---|---|
author | Lavender, Christopher A. Lorenz, Ronny Zhang, Ge Tamayo, Rita Hofacker, Ivo L. Weeks, Kevin M. |
author_facet | Lavender, Christopher A. Lorenz, Ronny Zhang, Ge Tamayo, Rita Hofacker, Ivo L. Weeks, Kevin M. |
author_sort | Lavender, Christopher A. |
collection | PubMed |
description | Discovery and characterization of functional RNA structures remains challenging due to deficiencies in de novo secondary structure modeling. Here we describe a dynamic programming approach for model-free sequence comparison that incorporates high-throughput chemical probing data. Based on SHAPE probing data alone, ribosomal RNAs (rRNAs) from three diverse organisms – the eubacteria E. coli and C. difficile and the archeon H. volcanii – could be aligned with accuracies comparable to alignments based on actual sequence identity. When both base sequence identity and chemical probing reactivities were considered together, accuracies improved further. Derived sequence alignments and chemical probing data from protein-free RNAs were then used as pseudo-free energy constraints to model consensus secondary structures for the 16S and 23S rRNAs. There are critical differences between these experimentally-informed models and currently accepted models, including in the functionally important neck and decoding regions of the 16S rRNA. We infer that the 16S rRNA has evolved to undergo large-scale changes in base pairing as part of ribosome function. As high-quality RNA probing data become widely available, structurally-informed sequence alignment will become broadly useful for de novo motif and function discovery. |
format | Online Article Text |
id | pubmed-4438973 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44389732015-05-29 Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA Lavender, Christopher A. Lorenz, Ronny Zhang, Ge Tamayo, Rita Hofacker, Ivo L. Weeks, Kevin M. PLoS Comput Biol Research Article Discovery and characterization of functional RNA structures remains challenging due to deficiencies in de novo secondary structure modeling. Here we describe a dynamic programming approach for model-free sequence comparison that incorporates high-throughput chemical probing data. Based on SHAPE probing data alone, ribosomal RNAs (rRNAs) from three diverse organisms – the eubacteria E. coli and C. difficile and the archeon H. volcanii – could be aligned with accuracies comparable to alignments based on actual sequence identity. When both base sequence identity and chemical probing reactivities were considered together, accuracies improved further. Derived sequence alignments and chemical probing data from protein-free RNAs were then used as pseudo-free energy constraints to model consensus secondary structures for the 16S and 23S rRNAs. There are critical differences between these experimentally-informed models and currently accepted models, including in the functionally important neck and decoding regions of the 16S rRNA. We infer that the 16S rRNA has evolved to undergo large-scale changes in base pairing as part of ribosome function. As high-quality RNA probing data become widely available, structurally-informed sequence alignment will become broadly useful for de novo motif and function discovery. Public Library of Science 2015-05-20 /pmc/articles/PMC4438973/ /pubmed/25992778 http://dx.doi.org/10.1371/journal.pcbi.1004126 Text en © 2015 Lavender et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lavender, Christopher A. Lorenz, Ronny Zhang, Ge Tamayo, Rita Hofacker, Ivo L. Weeks, Kevin M. Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA |
title | Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA |
title_full | Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA |
title_fullStr | Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA |
title_full_unstemmed | Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA |
title_short | Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA |
title_sort | model-free rna sequence and structure alignment informed by shape probing reveals a conserved alternate secondary structure for 16s rrna |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438973/ https://www.ncbi.nlm.nih.gov/pubmed/25992778 http://dx.doi.org/10.1371/journal.pcbi.1004126 |
work_keys_str_mv | AT lavenderchristophera modelfreernasequenceandstructurealignmentinformedbyshapeprobingrevealsaconservedalternatesecondarystructurefor16srrna AT lorenzronny modelfreernasequenceandstructurealignmentinformedbyshapeprobingrevealsaconservedalternatesecondarystructurefor16srrna AT zhangge modelfreernasequenceandstructurealignmentinformedbyshapeprobingrevealsaconservedalternatesecondarystructurefor16srrna AT tamayorita modelfreernasequenceandstructurealignmentinformedbyshapeprobingrevealsaconservedalternatesecondarystructurefor16srrna AT hofackerivol modelfreernasequenceandstructurealignmentinformedbyshapeprobingrevealsaconservedalternatesecondarystructurefor16srrna AT weekskevinm modelfreernasequenceandstructurealignmentinformedbyshapeprobingrevealsaconservedalternatesecondarystructurefor16srrna |