Cargando…
Spatiotemporal Patterns and Predictability of Cyberattacks
A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4439157/ https://www.ncbi.nlm.nih.gov/pubmed/25992837 http://dx.doi.org/10.1371/journal.pone.0124472 |
_version_ | 1782372465478991872 |
---|---|
author | Chen, Yu-Zhong Huang, Zi-Gang Xu, Shouhuai Lai, Ying-Cheng |
author_facet | Chen, Yu-Zhong Huang, Zi-Gang Xu, Shouhuai Lai, Ying-Cheng |
author_sort | Chen, Yu-Zhong |
collection | PubMed |
description | A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term “spatio” refers to the IP address space. In particular, we focus on analyzing macroscopic properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack “fingerprints” and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches. |
format | Online Article Text |
id | pubmed-4439157 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44391572015-05-29 Spatiotemporal Patterns and Predictability of Cyberattacks Chen, Yu-Zhong Huang, Zi-Gang Xu, Shouhuai Lai, Ying-Cheng PLoS One Research Article A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term “spatio” refers to the IP address space. In particular, we focus on analyzing macroscopic properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack “fingerprints” and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches. Public Library of Science 2015-05-20 /pmc/articles/PMC4439157/ /pubmed/25992837 http://dx.doi.org/10.1371/journal.pone.0124472 Text en © 2015 Chen et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chen, Yu-Zhong Huang, Zi-Gang Xu, Shouhuai Lai, Ying-Cheng Spatiotemporal Patterns and Predictability of Cyberattacks |
title | Spatiotemporal Patterns and Predictability of Cyberattacks |
title_full | Spatiotemporal Patterns and Predictability of Cyberattacks |
title_fullStr | Spatiotemporal Patterns and Predictability of Cyberattacks |
title_full_unstemmed | Spatiotemporal Patterns and Predictability of Cyberattacks |
title_short | Spatiotemporal Patterns and Predictability of Cyberattacks |
title_sort | spatiotemporal patterns and predictability of cyberattacks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4439157/ https://www.ncbi.nlm.nih.gov/pubmed/25992837 http://dx.doi.org/10.1371/journal.pone.0124472 |
work_keys_str_mv | AT chenyuzhong spatiotemporalpatternsandpredictabilityofcyberattacks AT huangzigang spatiotemporalpatternsandpredictabilityofcyberattacks AT xushouhuai spatiotemporalpatternsandpredictabilityofcyberattacks AT laiyingcheng spatiotemporalpatternsandpredictabilityofcyberattacks |