Cargando…

Receptor-binding domain-based subunit vaccines against MERS-CoV

Development of effective vaccines, in particular, subunit-based vaccines, against emerging Middle East respiratory syndrome (MERS) caused by the MERS coronavirus (MERS-CoV) will provide the safest means of preventing the continuous spread of MERS in humans and camels. This review briefly describes t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Naru, Tang, Jian, Lu, Lu, Jiang, Shibo, Du, Lanying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4439384/
https://www.ncbi.nlm.nih.gov/pubmed/25445336
http://dx.doi.org/10.1016/j.virusres.2014.11.013
Descripción
Sumario:Development of effective vaccines, in particular, subunit-based vaccines, against emerging Middle East respiratory syndrome (MERS) caused by the MERS coronavirus (MERS-CoV) will provide the safest means of preventing the continuous spread of MERS in humans and camels. This review briefly describes the structure of the MERS-CoV spike (S) protein and its receptor-binding domain (RBD), discusses the current status of MERS vaccine development and illustrates the strategies used to develop RBD-based subunit vaccines against MERS. It also summarizes currently available animal models for MERS-CoV and proposes a future direction for MERS vaccines. Taken together, this review will assist researchers working to develop effective and safe subunit vaccines against MERS-CoV and any other emerging coronaviruses that might cause future pandemics.