Cargando…
MicroRNA-503 acts as a tumor suppressor in glioblastoma for multiple antitumor effects by targeting IGF-1R
microRNA (miRNA) dysregulation is associated with various types of human cancer by regulating cancer cell survival, proliferation and invasion. Aberrant expression of microRNA-503 (miR-503) has been reported in several cancer profiles. However, potential linkage of miR-503 levels and the underlying...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440219/ https://www.ncbi.nlm.nih.gov/pubmed/24378652 http://dx.doi.org/10.3892/or.2013.2951 |
Sumario: | microRNA (miRNA) dysregulation is associated with various types of human cancer by regulating cancer cell survival, proliferation and invasion. Aberrant expression of microRNA-503 (miR-503) has been reported in several cancer profiles. However, potential linkage of miR-503 levels and the underlying regulatory mechanisms in human glioblastoma multiforme (GBM) remain unclear. In the present study, we showed for the first time that the expression of miR-503 was significantly reduced in GBM tissues and cell lines (U251 and U87MG) relative to normal brain tissues. Furthermore, our results demonstrated that overexpression of miR-503 in GBM cell lines not only suppressed cell proliferation through inducing G0/G1 cell cycle arrest and apoptosis, but also inhibited cancer cell migration and tumor invasion. In addition, we identified insulin-like growth factor-1 (IGF-1R) receptor mRNA is a bona fide target of miR-503 by computational analysis followed by luciferase reporter assays. Of note, upregulation of miR-503 in GBM cells suppressed endogenous IGF-1R protein expression. Further mechanistic analysis revealed that forced expression of miR-503 inhibited AKT activation, suggesting the tumor suppressive effect of miR-503 in GBM cells is partially mediated by phosphatidylinositol 3-kinase/AKT signaling. Taken together, the results of the present study demonstrated that miR-503 is a tumor suppressor for GBM and a favorable factor against glioma progression through targeting IGF-1R, thus providing a new evidence-supported prognostic marker for GBM diagnosis. |
---|