Cargando…
A Prodrug-type, MMP-2-targeting Nanoprobe for Tumor Detection and Imaging
Tumor-associated proteases (TAPs) have been intensively studied because of their critical roles in cancer development. As a case in point, expression of matrix metalloproteases (MMP) is significantly up-regulated in tumorigenesis, invasion, and metastasis among a majority of cancers. Here we present...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440437/ https://www.ncbi.nlm.nih.gov/pubmed/26000052 http://dx.doi.org/10.7150/thno.11139 |
Sumario: | Tumor-associated proteases (TAPs) have been intensively studied because of their critical roles in cancer development. As a case in point, expression of matrix metalloproteases (MMP) is significantly up-regulated in tumorigenesis, invasion, and metastasis among a majority of cancers. Here we present a prodrug-type, MMP-2-responsive nanoprobe system with high efficiency and low toxicity for detecting MMP-2-overexpressed tumors. The nanoprobe system is featured by its self-assembled fabrication and FRET effect. This prodrug-type nanoprobe is selectively activated by MMP-2, and thus useful for detection of the MMP-2-overexpressed cells and tumors. The nanoprobe system works successfully in various animal tumor models, including human fibrosarcoma and subcutaneous glioma xenograft. Furthermore, in order to overcome the blood brain barrier (BBB) and achieve brain tumor targeting, a transferrin-receptor targeting peptide (T7 peptide) is strategically incorporated into the nanoprobe. The T7-functionalized nanoprobe is capable of detecting the orthotopic brain tumor, with clear, real-time in vivo imaging. This method is promising for in vivo detection of brain tumor, and real-time monitor of a TAP (i.e., MMP-2). |
---|