Cargando…

Third harmonic generation microscopy of a mouse retina

PURPOSE: To demonstrate lipid-specific imaging of the retina through the use of third harmonic generation (THG), a multiphoton microscopic technique in which tissue contrast is generated from optical inhomogeneities. METHODS: A custom fiber laser and multiphoton microscope was constructed and optimi...

Descripción completa

Detalles Bibliográficos
Autores principales: Masihzadeh, Omid, Lei, Tim C., Domingue, Scott R., Kahook, Malik Y., Bartels, Randy A., Ammar, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440497/
https://www.ncbi.nlm.nih.gov/pubmed/25999681
Descripción
Sumario:PURPOSE: To demonstrate lipid-specific imaging of the retina through the use of third harmonic generation (THG), a multiphoton microscopic technique in which tissue contrast is generated from optical inhomogeneities. METHODS: A custom fiber laser and multiphoton microscope was constructed and optimized for simultaneous two-photon autofluorescence (TPAF) and THG retinal imaging. Imaging was performed using fixed-frozen sections of mouse eyes without the use of exogenous fluorescent dyes. In parallel experiments, a fluorescent nuclear stain was used to verify the location of the retinal cell nuclei. RESULTS: Simultaneous THG and TPAF images revealed all retinal layers with subcellular resolution. In BALB/c strains, the THG signal stems from the lipidic organelles of the cellular and nuclear membranes. In the C57BL/6 strain, the THG signal from the RPE cells originates from the pigmented granules. CONCLUSIONS: THG microscopy can be used to image structures of the mouse retina using contrast inherent to the tissue and without the use of a fluorescent dye or exogenously expressed recombinant protein.