Cargando…

A microRNA profile of human CD8(+) regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes

BACKGROUND: Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8(+)CD25(+) Treg cells and the impact of microRNAs on molecules associated with immune r...

Descripción completa

Detalles Bibliográficos
Autores principales: Jebbawi, Fadi, Fayyad-Kazan, Hussein, Merimi, Makram, Lewalle, Philippe, Verougstraete, Jean-Christophe, Leo, Oberdan, Romero, Pedro, Burny, Arsene, Badran, Bassam, Martiat, Philippe, Rouas, Redouane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440568/
https://www.ncbi.nlm.nih.gov/pubmed/25090912
http://dx.doi.org/10.1186/s12967-014-0218-x
Descripción
Sumario:BACKGROUND: Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8(+)CD25(+) Treg cells and the impact of microRNAs on molecules associated with immune regulation. METHODS: We purified human natural CD8(+) Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA ‘signature’ for CD8(+)CD25(+)FOXP3(+)CTLA-4(+) natural Treg cells. We used the ‘TargetScan’ and ‘miRBase’ bioinformatics programs to identify potential target sites for these microRNAs in the 3′-UTR of important Treg cell-associated genes. RESULTS: The human CD8(+)CD25(+) natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo. CONCLUSIONS: We are examining the biological relevance of this ‘signature’ by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.