Cargando…

Electrical Signals in Prayer Plants (Marantaceae)? Insights into the Trigger Mechanism of the Explosive Style Movement

The explosive pollination mechanism of the prayer plants (Marantaceae) is unique among plants. After a tactile stimulus by a pollinator, the style curls up rapidly and mediates pollen exchange. It is still under discussion whether this explosive movement is released electrophysiologically, i.e. by a...

Descripción completa

Detalles Bibliográficos
Autores principales: Jerominek, Markus, Claßen-Bockhoff, Regine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440630/
https://www.ncbi.nlm.nih.gov/pubmed/25997015
http://dx.doi.org/10.1371/journal.pone.0126411
Descripción
Sumario:The explosive pollination mechanism of the prayer plants (Marantaceae) is unique among plants. After a tactile stimulus by a pollinator, the style curls up rapidly and mediates pollen exchange. It is still under discussion whether this explosive movement is released electrophysiologically, i.e. by a change in the membrane potential (as in Venus flytrap), or purely mechanically. In the present study, electrophysiological experiments are conducted to clarify the mechanism. Artificial release experiments (chemical and electrical) and electrophysiological measurements were conducted with two phylogenetically distant species, Goeppertia bachemiana (E. Morren) Borchs. & S. Suárez and Donax canniformis (G. Forst.) K. Schum. Electric responses recorded after style release by extracellular measurements are characterised as variation potentials due to their long repolarization phase and lack of self-perpetuation. In both species, chemical and electric stimulations do not release the style movement. It is concluded that the style movement in Marantaceae is released mechanically by relieving the tissue pressure. Accordingly, the variation potential is an effect of the movement and not its cause. The study exemplarily shows that fast movements in plants are not necessarily initiated by electric changes of the membrane as known from the Venus flytrap.