Cargando…
Biodistribution and Toxicity Studies of PRINT Hydrogel Nanoparticles in Mosquito Larvae and Cells
Mosquito-borne diseases continue to remain major threats to human and animal health and impediments to socioeconomic development. Increasing mosquito resistance to chemical insecticides is a great public health concern, and new strategies/technologies are necessary to develop the next-generation of...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440723/ https://www.ncbi.nlm.nih.gov/pubmed/25996390 http://dx.doi.org/10.1371/journal.pntd.0003735 |
_version_ | 1782372683054317568 |
---|---|
author | Phanse, Yashdeep Dunphy, Brendan M. Perry, Jillian L. Airs, Paul M. Paquette, Cynthia C. H. Carlson, Jonathan O. Xu, Jing Luft, J. Christopher DeSimone, Joseph M. Beaty, Barry J. Bartholomay, Lyric C. |
author_facet | Phanse, Yashdeep Dunphy, Brendan M. Perry, Jillian L. Airs, Paul M. Paquette, Cynthia C. H. Carlson, Jonathan O. Xu, Jing Luft, J. Christopher DeSimone, Joseph M. Beaty, Barry J. Bartholomay, Lyric C. |
author_sort | Phanse, Yashdeep |
collection | PubMed |
description | Mosquito-borne diseases continue to remain major threats to human and animal health and impediments to socioeconomic development. Increasing mosquito resistance to chemical insecticides is a great public health concern, and new strategies/technologies are necessary to develop the next-generation of vector control tools. We propose to develop a novel method for mosquito control that employs nanoparticles (NPs) as a platform for delivery of mosquitocidal dsRNA molecules to silence mosquito genes and cause vector lethality. Identifying optimal NP chemistry and morphology is imperative for efficient mosquitocide delivery. Toward this end, fluorescently labeled polyethylene glycol NPs of specific sizes, shapes (80 nm x 320 nm, 80 nm x 5000 nm, 200 nm x 200 nm, and 1000 nm x 1000 nm) and charges (negative and positive) were fabricated by Particle Replication in Non-Wetting Templates (PRINT) technology. Biodistribution, persistence, and toxicity of PRINT NPs were evaluated in vitro in mosquito cell culture and in vivo in Anopheles gambiae larvae following parenteral and oral challenge. Following parenteral challenge, the biodistribution of the positively and negatively charged NPs of each size and shape was similar; intense fluorescence was observed in thoracic and abdominal regions of the larval body. Positively charged NPs were more associated with the gastric caeca in the gastrointestinal tract. Negatively charged NPs persisted through metamorphosis and were observed in head, body and ovaries of adults. Following oral challenge, NPs were detected in the larval mid- and hindgut. Positively charged NPs were more efficiently internalized in vitro than negatively charged NPs. Positively charged NPs trafficked to the cytosol, but negatively charged NPs co-localized with lysosomes. Following in vitro and in vivo challenge, none of the NPs tested induced any cytotoxic effects. |
format | Online Article Text |
id | pubmed-4440723 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44407232015-05-29 Biodistribution and Toxicity Studies of PRINT Hydrogel Nanoparticles in Mosquito Larvae and Cells Phanse, Yashdeep Dunphy, Brendan M. Perry, Jillian L. Airs, Paul M. Paquette, Cynthia C. H. Carlson, Jonathan O. Xu, Jing Luft, J. Christopher DeSimone, Joseph M. Beaty, Barry J. Bartholomay, Lyric C. PLoS Negl Trop Dis Research Article Mosquito-borne diseases continue to remain major threats to human and animal health and impediments to socioeconomic development. Increasing mosquito resistance to chemical insecticides is a great public health concern, and new strategies/technologies are necessary to develop the next-generation of vector control tools. We propose to develop a novel method for mosquito control that employs nanoparticles (NPs) as a platform for delivery of mosquitocidal dsRNA molecules to silence mosquito genes and cause vector lethality. Identifying optimal NP chemistry and morphology is imperative for efficient mosquitocide delivery. Toward this end, fluorescently labeled polyethylene glycol NPs of specific sizes, shapes (80 nm x 320 nm, 80 nm x 5000 nm, 200 nm x 200 nm, and 1000 nm x 1000 nm) and charges (negative and positive) were fabricated by Particle Replication in Non-Wetting Templates (PRINT) technology. Biodistribution, persistence, and toxicity of PRINT NPs were evaluated in vitro in mosquito cell culture and in vivo in Anopheles gambiae larvae following parenteral and oral challenge. Following parenteral challenge, the biodistribution of the positively and negatively charged NPs of each size and shape was similar; intense fluorescence was observed in thoracic and abdominal regions of the larval body. Positively charged NPs were more associated with the gastric caeca in the gastrointestinal tract. Negatively charged NPs persisted through metamorphosis and were observed in head, body and ovaries of adults. Following oral challenge, NPs were detected in the larval mid- and hindgut. Positively charged NPs were more efficiently internalized in vitro than negatively charged NPs. Positively charged NPs trafficked to the cytosol, but negatively charged NPs co-localized with lysosomes. Following in vitro and in vivo challenge, none of the NPs tested induced any cytotoxic effects. Public Library of Science 2015-05-21 /pmc/articles/PMC4440723/ /pubmed/25996390 http://dx.doi.org/10.1371/journal.pntd.0003735 Text en © 2015 Phanse et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Phanse, Yashdeep Dunphy, Brendan M. Perry, Jillian L. Airs, Paul M. Paquette, Cynthia C. H. Carlson, Jonathan O. Xu, Jing Luft, J. Christopher DeSimone, Joseph M. Beaty, Barry J. Bartholomay, Lyric C. Biodistribution and Toxicity Studies of PRINT Hydrogel Nanoparticles in Mosquito Larvae and Cells |
title | Biodistribution and Toxicity Studies of PRINT Hydrogel Nanoparticles in Mosquito Larvae and Cells |
title_full | Biodistribution and Toxicity Studies of PRINT Hydrogel Nanoparticles in Mosquito Larvae and Cells |
title_fullStr | Biodistribution and Toxicity Studies of PRINT Hydrogel Nanoparticles in Mosquito Larvae and Cells |
title_full_unstemmed | Biodistribution and Toxicity Studies of PRINT Hydrogel Nanoparticles in Mosquito Larvae and Cells |
title_short | Biodistribution and Toxicity Studies of PRINT Hydrogel Nanoparticles in Mosquito Larvae and Cells |
title_sort | biodistribution and toxicity studies of print hydrogel nanoparticles in mosquito larvae and cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440723/ https://www.ncbi.nlm.nih.gov/pubmed/25996390 http://dx.doi.org/10.1371/journal.pntd.0003735 |
work_keys_str_mv | AT phanseyashdeep biodistributionandtoxicitystudiesofprinthydrogelnanoparticlesinmosquitolarvaeandcells AT dunphybrendanm biodistributionandtoxicitystudiesofprinthydrogelnanoparticlesinmosquitolarvaeandcells AT perryjillianl biodistributionandtoxicitystudiesofprinthydrogelnanoparticlesinmosquitolarvaeandcells AT airspaulm biodistributionandtoxicitystudiesofprinthydrogelnanoparticlesinmosquitolarvaeandcells AT paquettecynthiach biodistributionandtoxicitystudiesofprinthydrogelnanoparticlesinmosquitolarvaeandcells AT carlsonjonathano biodistributionandtoxicitystudiesofprinthydrogelnanoparticlesinmosquitolarvaeandcells AT xujing biodistributionandtoxicitystudiesofprinthydrogelnanoparticlesinmosquitolarvaeandcells AT luftjchristopher biodistributionandtoxicitystudiesofprinthydrogelnanoparticlesinmosquitolarvaeandcells AT desimonejosephm biodistributionandtoxicitystudiesofprinthydrogelnanoparticlesinmosquitolarvaeandcells AT beatybarryj biodistributionandtoxicitystudiesofprinthydrogelnanoparticlesinmosquitolarvaeandcells AT bartholomaylyricc biodistributionandtoxicitystudiesofprinthydrogelnanoparticlesinmosquitolarvaeandcells |