Cargando…
Detection of Peptide-Based Nanoparticles in Blood Plasma by ELISA
AIMS: The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. MATERIALS & METHODS: A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440766/ https://www.ncbi.nlm.nih.gov/pubmed/25996618 http://dx.doi.org/10.1371/journal.pone.0126136 |
Sumario: | AIMS: The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. MATERIALS & METHODS: A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. RESULTS: The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl methacrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. CONCLUSIONS: We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions. |
---|