Cargando…
Evaluating a variety of text-mined features for automatic protein function prediction with GOstruct
Most computational methods that predict protein function do not take advantage of the large amount of information contained in the biomedical literature. In this work we evaluate both ontology term co-mention and bag-of-words features mined from the biomedical literature and analyze their impact in...
Autores principales: | Funk, Christopher S, Kahanda, Indika, Ben-Hur, Asa, Verspoor, Karin M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441003/ https://www.ncbi.nlm.nih.gov/pubmed/26005564 http://dx.doi.org/10.1186/s13326-015-0006-4 |
Ejemplares similares
-
PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources
por: Kahanda, Indika, et al.
Publicado: (2015) -
A close look at protein function prediction evaluation protocols
por: Kahanda, Indika, et al.
Publicado: (2015) -
Overview of the BioCreative VI text-mining services for Kinome Curation Track
por: Gobeill, Julien, et al.
Publicado: (2018) -
Text Mining Improves Prediction of Protein Functional Sites
por: Verspoor, Karin M., et al.
Publicado: (2012) -
Combining heterogeneous data sources for accurate functional annotation of proteins
por: Sokolov, Artem, et al.
Publicado: (2013)