Cargando…

Flower evolution of alpine forbs in the open top chambers (OTCs) from the Qinghai-Tibet Plateau

Effects of global changes on biodiversity have been paid more and more attention world widely, and the open top chambers (OTCs) are the most common tools to study the effects of climatic warming on plant diversity. However, it remains unclear how flowers evolve under environmental changes, which cou...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Chan, Wang, Lin-Lin, Yang, Yong-Ping, Duan, Yuan-Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441194/
https://www.ncbi.nlm.nih.gov/pubmed/25998558
http://dx.doi.org/10.1038/srep10254
Descripción
Sumario:Effects of global changes on biodiversity have been paid more and more attention world widely, and the open top chambers (OTCs) are the most common tools to study the effects of climatic warming on plant diversity. However, it remains unclear how flowers evolve under environmental changes, which could help us to understand the changes of plant diversity in the OTCs. We compared the insect diversity and pollen:ovule (P/O) ratio of eight outcrossing species with different life histories inside and outside the OTCs on the Qinghai-Tibet Plateau, to examine the effects induced by OTCs on the evolution of floral traits. In the OTCs, P/O ratio decreased in annuals, but increased in perennials, indicating an overall trend toward selfing in annuals. We found that the insect diversity differed significantly inside and outside the OTCS, with decreases of dipteran insects and bees. We concluded that changes of P/O ratio in the studied plant species might result from pollination failure, which might be the results of mismatch between flowering time and pollinator activities. We also suggested annuals might be in a more extinction risk than perennials in OTCs, if strong inbreeding depression occurs in these annual outcrossing plants.