Cargando…

FK-3000 isolated from Stephania delavayi Diels. inhibits MDA-MB-231 cell proliferation by decreasing NF-κB phosphorylation and COX-2 expression

The World Health Organization (WHO) has reported that cancer is one of the most prevalent diseases and a leading cause of death worldwide. Many anticancer drug development studies have been pursued over the last few decades and several viable drugs have been discovered, such as paclitaxel, topotecan...

Descripción completa

Detalles Bibliográficos
Autores principales: DE XU, HONG, CHO, SOON-CHANG, BANG, MI-AE, BAE, CHUN-SIK, CHOI, YEONSHIK, LI, YONG-CHUN, LIM, SEUNG-KIL, SHIM, JAEGAL, PARK, DAE-HUN
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441289/
https://www.ncbi.nlm.nih.gov/pubmed/25823424
http://dx.doi.org/10.3892/ijo.2015.2940
Descripción
Sumario:The World Health Organization (WHO) has reported that cancer is one of the most prevalent diseases and a leading cause of death worldwide. Many anticancer drug development studies have been pursued over the last few decades and several viable drugs have been discovered, such as paclitaxel, topotecan and irinotecan. Previously, our research group uncovered the cytocidal and cytostatic effects of the plant Stephania delavayi Diels. In this study, we determined the active chemical to be 6,7-di-O-acetylsinococuline (FK-3000). The FK-3000 half maximal inhibitory concentration (IC(50)) in MDA-MB-231 breast carcinoma cells at 48 h was 0.52 μg/ml and it induced apoptosis in a dose- and time-dependent manner. FK-3000 suppressed NF-κB nuclear translocation, decreased NF-κB phosphorylation, and decreased COX-2 protein expression. MDA-MB-231 xenografted mice were treated with FK-3000, Taxol, or their combination for 21 days. The tumor size was smallest in the co-treatment group, indicating that FK-3000 may have a synergistic effect with Taxol. FK-3000 treatment showed no adverse effects on blood cell counts, serum protein levels, or pathology. These studies demonstrate that FK-3000, isolated from S. delavayi Diels., is a promising, pathway-specific anticancer agent that exhibits low toxicity.