Cargando…

Effect of HIF-1α on biological activation of human tongue squamous cell carcinoma SCC-15 cells in vitro

Hypoxia-inducible factor-1α (HIF-1α) is a key regulator for tumor cells and tissues to adapt to hypoxic condition. Suppressing the expression of HIF-1α is important to evaluate its effect on cancer cells. This study was carried out to analyze the effect of HIF-1α on the biological activation of huma...

Descripción completa

Detalles Bibliográficos
Autores principales: ZHOU, XIAOKANG, HUANG, DANQING, XUE, ZHONGXIU, XU, XIUHUI, WANG, KAI, SUN, YAO, KANG, FEIWU
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441294/
https://www.ncbi.nlm.nih.gov/pubmed/25816356
http://dx.doi.org/10.3892/ijo.2015.2934
Descripción
Sumario:Hypoxia-inducible factor-1α (HIF-1α) is a key regulator for tumor cells and tissues to adapt to hypoxic condition. Suppressing the expression of HIF-1α is important to evaluate its effect on cancer cells. This study was carried out to analyze the effect of HIF-1α on the biological activation of human tongue squamous cell carcinoma (TSCC) SCC-15 cells. In this experiment, deferoxamine mesylate (DFO) was used to induce hypoxic condition. HIF-1α gene was suppressed by lentiviral vector. The effect of the level of HIF-1α expression was tested on the proliferation, cell cycle, cell apoptosis and cell invasion of SCC-15 cells. We demonstrated that SCC-15 cells showed a more aggressive phenotype after treated with DFO. Additionally, DFO was able to induce the expression of HIF-1α protein. Lentiviral vector can effectively inhibit HIF-1α expression on mRNA and protein level. Under normoxic or hypoxic conditions, downregulation of HIF-1α for SCC-15 cells induced cell apoptosis and inhibited growth and invasion. These results showed that suppressing the expression of HIF-1α inhibited the aggressive potential of SCC-15 cells under normoxic and hypoxic condition. Thus, finding an effective and safe pathway to inhibit the expression of HIF-1α can help us to improve the survival rate of human TSCC patients.