Cargando…
Exploring Guidelines for Classification of Major Heart Failure Subtypes by Using Machine Learning
BACKGROUND: Heart failure (HF) manifests as at least two subtypes. The current paradigm distinguishes the two by using both the metric ejection fraction (EF) and a constraint for end-diastolic volume. About half of all HF patients exhibit preserved EF. In contrast, the classical type of HF shows a r...
Autores principales: | Alonso-Betanzos, Amparo, Bolón-Canedo, Verónica, Heyndrickx, Guy R, Kerkhof, Peter LM |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441365/ https://www.ncbi.nlm.nih.gov/pubmed/26052231 http://dx.doi.org/10.4137/CMC.S18746 |
Ejemplares similares
-
Low-precision feature selection on microarray data: an information theoretic approach
por: Morán-Fernández, Laura, et al.
Publicado: (2022) -
Machine learning techniques to predict different levels of hospital care of CoVid-19
por: Hernández-Pereira, Elena, et al.
Publicado: (2021) -
Statistical Hypothesis Testing versus Machine Learning Binary Classification: Distinctions and Guidelines
por: Li, Jingyi Jessica, et al.
Publicado: (2020) -
Abandon of intramuscular administration of rabies immunoglobulin for post-exposure prophylaxis in the revised guidelines in the Netherlands in 2018: cost and volume savings
por: Schreuder, Imke, et al.
Publicado: (2020) -
Prognostic Significance of Subtype Classification for Short- and Long-Term Survival in Breast Cancer: Survival Time Holds the Key
por: Ambs, Stefan
Publicado: (2010)