Cargando…

Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation

This paper presents the application of an Adaptive Resonance Theory (ART) based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier calle...

Descripción completa

Detalles Bibliográficos
Autores principales: Lledó, Luis D., Badesa, Francisco J., Almonacid, Miguel, Cano-Izquierdo, José M., Sabater-Navarro, José M., Fernández, Eduardo, Garcia-Aracil, Nicolás
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441369/
https://www.ncbi.nlm.nih.gov/pubmed/26001214
http://dx.doi.org/10.1371/journal.pone.0127777
_version_ 1782372780006703104
author Lledó, Luis D.
Badesa, Francisco J.
Almonacid, Miguel
Cano-Izquierdo, José M.
Sabater-Navarro, José M.
Fernández, Eduardo
Garcia-Aracil, Nicolás
author_facet Lledó, Luis D.
Badesa, Francisco J.
Almonacid, Miguel
Cano-Izquierdo, José M.
Sabater-Navarro, José M.
Fernández, Eduardo
Garcia-Aracil, Nicolás
author_sort Lledó, Luis D.
collection PubMed
description This paper presents the application of an Adaptive Resonance Theory (ART) based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier called S-dFasArt is presented. Then, the methodology and experimental protocols to perform a robot-assisted neurorehabilitation task are described. Our results show that the combination of the dynamic nature of S-dFasArt classifier with a supervisory module are very robust and suggest that this methodology could be very useful to take into account emotional states in robot-assisted environments and help to enhance and better understand human-robot interactions.
format Online
Article
Text
id pubmed-4441369
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-44413692015-05-28 Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation Lledó, Luis D. Badesa, Francisco J. Almonacid, Miguel Cano-Izquierdo, José M. Sabater-Navarro, José M. Fernández, Eduardo Garcia-Aracil, Nicolás PLoS One Research Article This paper presents the application of an Adaptive Resonance Theory (ART) based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier called S-dFasArt is presented. Then, the methodology and experimental protocols to perform a robot-assisted neurorehabilitation task are described. Our results show that the combination of the dynamic nature of S-dFasArt classifier with a supervisory module are very robust and suggest that this methodology could be very useful to take into account emotional states in robot-assisted environments and help to enhance and better understand human-robot interactions. Public Library of Science 2015-05-22 /pmc/articles/PMC4441369/ /pubmed/26001214 http://dx.doi.org/10.1371/journal.pone.0127777 Text en © 2015 Lledó et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Lledó, Luis D.
Badesa, Francisco J.
Almonacid, Miguel
Cano-Izquierdo, José M.
Sabater-Navarro, José M.
Fernández, Eduardo
Garcia-Aracil, Nicolás
Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation
title Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation
title_full Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation
title_fullStr Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation
title_full_unstemmed Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation
title_short Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation
title_sort supervised and dynamic neuro-fuzzy systems to classify physiological responses in robot-assisted neurorehabilitation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441369/
https://www.ncbi.nlm.nih.gov/pubmed/26001214
http://dx.doi.org/10.1371/journal.pone.0127777
work_keys_str_mv AT lledoluisd supervisedanddynamicneurofuzzysystemstoclassifyphysiologicalresponsesinrobotassistedneurorehabilitation
AT badesafranciscoj supervisedanddynamicneurofuzzysystemstoclassifyphysiologicalresponsesinrobotassistedneurorehabilitation
AT almonacidmiguel supervisedanddynamicneurofuzzysystemstoclassifyphysiologicalresponsesinrobotassistedneurorehabilitation
AT canoizquierdojosem supervisedanddynamicneurofuzzysystemstoclassifyphysiologicalresponsesinrobotassistedneurorehabilitation
AT sabaternavarrojosem supervisedanddynamicneurofuzzysystemstoclassifyphysiologicalresponsesinrobotassistedneurorehabilitation
AT fernandezeduardo supervisedanddynamicneurofuzzysystemstoclassifyphysiologicalresponsesinrobotassistedneurorehabilitation
AT garciaaracilnicolas supervisedanddynamicneurofuzzysystemstoclassifyphysiologicalresponsesinrobotassistedneurorehabilitation