Cargando…
Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation
This paper presents the application of an Adaptive Resonance Theory (ART) based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier calle...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441369/ https://www.ncbi.nlm.nih.gov/pubmed/26001214 http://dx.doi.org/10.1371/journal.pone.0127777 |
_version_ | 1782372780006703104 |
---|---|
author | Lledó, Luis D. Badesa, Francisco J. Almonacid, Miguel Cano-Izquierdo, José M. Sabater-Navarro, José M. Fernández, Eduardo Garcia-Aracil, Nicolás |
author_facet | Lledó, Luis D. Badesa, Francisco J. Almonacid, Miguel Cano-Izquierdo, José M. Sabater-Navarro, José M. Fernández, Eduardo Garcia-Aracil, Nicolás |
author_sort | Lledó, Luis D. |
collection | PubMed |
description | This paper presents the application of an Adaptive Resonance Theory (ART) based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier called S-dFasArt is presented. Then, the methodology and experimental protocols to perform a robot-assisted neurorehabilitation task are described. Our results show that the combination of the dynamic nature of S-dFasArt classifier with a supervisory module are very robust and suggest that this methodology could be very useful to take into account emotional states in robot-assisted environments and help to enhance and better understand human-robot interactions. |
format | Online Article Text |
id | pubmed-4441369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44413692015-05-28 Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation Lledó, Luis D. Badesa, Francisco J. Almonacid, Miguel Cano-Izquierdo, José M. Sabater-Navarro, José M. Fernández, Eduardo Garcia-Aracil, Nicolás PLoS One Research Article This paper presents the application of an Adaptive Resonance Theory (ART) based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier called S-dFasArt is presented. Then, the methodology and experimental protocols to perform a robot-assisted neurorehabilitation task are described. Our results show that the combination of the dynamic nature of S-dFasArt classifier with a supervisory module are very robust and suggest that this methodology could be very useful to take into account emotional states in robot-assisted environments and help to enhance and better understand human-robot interactions. Public Library of Science 2015-05-22 /pmc/articles/PMC4441369/ /pubmed/26001214 http://dx.doi.org/10.1371/journal.pone.0127777 Text en © 2015 Lledó et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lledó, Luis D. Badesa, Francisco J. Almonacid, Miguel Cano-Izquierdo, José M. Sabater-Navarro, José M. Fernández, Eduardo Garcia-Aracil, Nicolás Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation |
title | Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation |
title_full | Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation |
title_fullStr | Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation |
title_full_unstemmed | Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation |
title_short | Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation |
title_sort | supervised and dynamic neuro-fuzzy systems to classify physiological responses in robot-assisted neurorehabilitation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441369/ https://www.ncbi.nlm.nih.gov/pubmed/26001214 http://dx.doi.org/10.1371/journal.pone.0127777 |
work_keys_str_mv | AT lledoluisd supervisedanddynamicneurofuzzysystemstoclassifyphysiologicalresponsesinrobotassistedneurorehabilitation AT badesafranciscoj supervisedanddynamicneurofuzzysystemstoclassifyphysiologicalresponsesinrobotassistedneurorehabilitation AT almonacidmiguel supervisedanddynamicneurofuzzysystemstoclassifyphysiologicalresponsesinrobotassistedneurorehabilitation AT canoizquierdojosem supervisedanddynamicneurofuzzysystemstoclassifyphysiologicalresponsesinrobotassistedneurorehabilitation AT sabaternavarrojosem supervisedanddynamicneurofuzzysystemstoclassifyphysiologicalresponsesinrobotassistedneurorehabilitation AT fernandezeduardo supervisedanddynamicneurofuzzysystemstoclassifyphysiologicalresponsesinrobotassistedneurorehabilitation AT garciaaracilnicolas supervisedanddynamicneurofuzzysystemstoclassifyphysiologicalresponsesinrobotassistedneurorehabilitation |