Cargando…

Million-Fold Electrical Conductivity Enhancement in Fe(2)(DEBDC) versus Mn(2)(DEBDC) (E = S, O)

[Image: see text] Reaction of FeCl(2) and H(4)DSBDC (2,5-disulfhydrylbenzene-1,4-dicarboxylic acid) leads to the formation of Fe(2)(DSBDC), an analogue of M(2)(DOBDC) (MOF-74, DOBDC(4–) = 2,5-dihydroxybenzene-1,4-dicarboxylate). The bulk electrical conductivity values of both Fe(2)(DSBDC) and Fe(2)(...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Lei, Hendon, Christopher H., Minier, Mikael A., Walsh, Aron, Dincă, Mircea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2015
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442594/
https://www.ncbi.nlm.nih.gov/pubmed/25932955
http://dx.doi.org/10.1021/jacs.5b02897
Descripción
Sumario:[Image: see text] Reaction of FeCl(2) and H(4)DSBDC (2,5-disulfhydrylbenzene-1,4-dicarboxylic acid) leads to the formation of Fe(2)(DSBDC), an analogue of M(2)(DOBDC) (MOF-74, DOBDC(4–) = 2,5-dihydroxybenzene-1,4-dicarboxylate). The bulk electrical conductivity values of both Fe(2)(DSBDC) and Fe(2)(DOBDC) are ∼6 orders of magnitude higher than those of the Mn(2+) analogues, Mn(2)(DEBDC) (E = O, S). Because the metals are of the same formal oxidation state, the increase in conductivity is attributed to the loosely bound Fe(2+) β-spin electron. These results provide important insight for the rational design of conductive metal–organic frameworks, highlighting in particular the advantages of iron for synthesizing such materials.