Cargando…

Ltc1 is an ER-localized sterol transporter and a component of ER–mitochondria and ER–vacuole contacts

Organelle contact sites perform fundamental functions in cells, including lipid and ion homeostasis, membrane dynamics, and signaling. Using a forward proteomics approach in yeast, we identified new ER–mitochondria and ER–vacuole contacts specified by an uncharacterized protein, Ylr072w. Ylr072w is...

Descripción completa

Detalles Bibliográficos
Autores principales: Murley, Andrew, Sarsam, Reta D., Toulmay, Alexandre, Yamada, Justin, Prinz, William A., Nunnari, Jodi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442815/
https://www.ncbi.nlm.nih.gov/pubmed/25987606
http://dx.doi.org/10.1083/jcb.201502033
Descripción
Sumario:Organelle contact sites perform fundamental functions in cells, including lipid and ion homeostasis, membrane dynamics, and signaling. Using a forward proteomics approach in yeast, we identified new ER–mitochondria and ER–vacuole contacts specified by an uncharacterized protein, Ylr072w. Ylr072w is a conserved protein with GRAM and VASt domains that selectively transports sterols and is thus termed Ltc1, for Lipid transfer at contact site 1. Ltc1 localized to ER–mitochondria and ER–vacuole contacts via the mitochondrial import receptors Tom70/71 and the vacuolar protein Vac8, respectively. At mitochondria, Ltc1 was required for cell viability in the absence of Mdm34, a subunit of the ER–mitochondria encounter structure. At vacuoles, Ltc1 was required for sterol-enriched membrane domain formation in response to stress. Increasing the proportion of Ltc1 at vacuoles was sufficient to induce sterol-enriched vacuolar domains without stress. Thus, our data support a model in which Ltc1 is a sterol-dependent regulator of organelle and cellular homeostasis via its dual localization to ER–mitochondria and ER–vacuole contact sites.