Cargando…

Assessing the genetic variation of Ty-1 and Ty-3 alleles conferring resistance to tomato yellow leaf curl virus in a broad tomato germplasm

Tomato yellow leaf curl virus (TYLCV) hampers tomato production worldwide. Our previous studies have focussed on mapping and ultimately cloning of the TYLCV resistance genes Ty-1 and Ty-3. Both genes are derived from Solanum chilense and were shown to be allelic. They code for an RNA-dependent RNA p...

Descripción completa

Detalles Bibliográficos
Autores principales: Caro, Myluska, Verlaan, Maarten G., Julián, Olga, Finkers, Richard, Wolters, Anne-Marie A., Hutton, Samuel F., Scott, John W., Kormelink, Richard, Visser, Richard G. F., Díez, Maria J., Pérez-de-Castro, Ana, Bai, Yuling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442973/
https://www.ncbi.nlm.nih.gov/pubmed/26028987
http://dx.doi.org/10.1007/s11032-015-0329-y
Descripción
Sumario:Tomato yellow leaf curl virus (TYLCV) hampers tomato production worldwide. Our previous studies have focussed on mapping and ultimately cloning of the TYLCV resistance genes Ty-1 and Ty-3. Both genes are derived from Solanum chilense and were shown to be allelic. They code for an RNA-dependent RNA polymerase (RDR) belonging to the RDRγ type defined by a DFDGD catalytic domain. In this study, we first fine-mapped the TYLCV resistance in S. chilense LA1932, LA1960 and LA1971. Results showed that chromosomal intervals of the causal genes in these TYLCV-resistant accessions overlap and cover the region where Ty-1/Ty-3 is located. Further, virus-induced gene silencing was used to silence Ty-1/Ty-3 in tomato lines carrying TYLCV resistance introgressed from S. chilense LA1932, LA1938 and LA1971. Results showed that silencing Ty-1/Ty-3 compromised the resistance in lines derived from S. chilense LA1932 and LA1938. The LA1971-derived material remained resistant upon silencing Ty-1/Ty-3. Further, we studied the allelic variation of the Ty-1/Ty-3 gene by examining cDNA sequences from nine S. chilense-derived lines/accessions and more than 80 tomato cultivars, landraces and accessions of related wild species. The DFDGD catalytic domain of the Ty-1/Ty-3 gene is conserved among all tomato lines and species analysed. In addition, the 12 base pair insertion at the 5-prime part of the Ty-1/Ty-3 gene was found not to be specific for the TYLCV resistance allele. However, compared with the susceptible ty-1 allele, the Ty-1/Ty-3 allele is characterized by three specific amino acids shared by seven TYLCV-resistant S. chilense accessions or derived lines. Thus, Ty-1/Ty-3-specific markers can be developed based on these polymorphisms. Elevated transcript levels were observed for all tested S. chilenseRDR alleles (both Ty-1 and ty-1 alleles), demonstrating that elevated expression level is not a good selection criterion for a functional Ty-1/Ty-3 allele. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-015-0329-y) contains supplementary material, which is available to authorized users.