Cargando…

Keratoconus in vitro and the key players of the TGF-β pathway

Purpose: Keratoconus (KC) is a corneal thinning disease of unknown etiology whose pathophysiology is correlated with the presence of a thin corneal stroma and altered extracellular matrix (ECM). Transforming growth factor-β (TGF-β) signaling is a key regulator of ECM secretion and assembly in multip...

Descripción completa

Detalles Bibliográficos
Autores principales: Priyadarsini, Shrestha, McKay, Tina B., Sarker-Nag, Akhee, Karamichos, Dimitrios
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443584/
https://www.ncbi.nlm.nih.gov/pubmed/26015770
_version_ 1782373015404675072
author Priyadarsini, Shrestha
McKay, Tina B.
Sarker-Nag, Akhee
Karamichos, Dimitrios
author_facet Priyadarsini, Shrestha
McKay, Tina B.
Sarker-Nag, Akhee
Karamichos, Dimitrios
author_sort Priyadarsini, Shrestha
collection PubMed
description Purpose: Keratoconus (KC) is a corneal thinning disease of unknown etiology whose pathophysiology is correlated with the presence of a thin corneal stroma and altered extracellular matrix (ECM). Transforming growth factor-β (TGF-β) signaling is a key regulator of ECM secretion and assembly in multiple tissues, including the anterior segment of the eye, and it has been linked to KC. We have previously shown that human keratoconus cells (HKCs) have a myofibroblast phenotype and altered ECM assembly compared to normal human corneal fibroblasts (HCFs). Moreover, TGF-β3 treatment promotes assembly of a more normal stromal ECM and modulates the fibrotic phenotype in HKCs. Herein, we identify alterations in TGF-β signaling that contribute to the observed fibrotic phenotype in HKCs. Methods: HCFs and HKCs were stimulated with TGF-β1, TGF-β2, or TGF-β3 isoforms (0.1 ng/mL) in the presence of a stable vitamin C derivative (0.5 mM) for 4 weeks. All samples were examined using RT–PCR and western blotting to quantify changes in the expressions of key TGF-β signaling molecules between HCFs and HKCs. Results: We found a significant downregulation in the SMAD6 and SMAD7 expressions by HKCs when compared to HCFs (p≤0.05). Moreover, stimulation of HKCs with any of the three TGF-β isoforms did not significantly alter the expressions of SMAD6 or SMAD7. HCFs also showed an upregulation in TGF-βRI, TGF-βRII, and TGF-βRIII following TGF-β3 treatment, whereas HKCs showed a significant two-fold downregulation. Conclusions: Overall, our data shows the decreased expressions of the regulatory SMADs SMAD6 and SMAD7 by HKCs contribute to the pathological ECM structure observed in KC, and TGF-β3 may attenuate this mechanism by downregulating the expression of the key profibrotic receptor, TGF-βRII. Our study suggests a significant role of altered regulation of TGF-β signaling in KC progression and that it may enable novel therapeutic developments targeting TGF-β receptor regulation.
format Online
Article
Text
id pubmed-4443584
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Molecular Vision
record_format MEDLINE/PubMed
spelling pubmed-44435842015-05-26 Keratoconus in vitro and the key players of the TGF-β pathway Priyadarsini, Shrestha McKay, Tina B. Sarker-Nag, Akhee Karamichos, Dimitrios Mol Vis Research Article Purpose: Keratoconus (KC) is a corneal thinning disease of unknown etiology whose pathophysiology is correlated with the presence of a thin corneal stroma and altered extracellular matrix (ECM). Transforming growth factor-β (TGF-β) signaling is a key regulator of ECM secretion and assembly in multiple tissues, including the anterior segment of the eye, and it has been linked to KC. We have previously shown that human keratoconus cells (HKCs) have a myofibroblast phenotype and altered ECM assembly compared to normal human corneal fibroblasts (HCFs). Moreover, TGF-β3 treatment promotes assembly of a more normal stromal ECM and modulates the fibrotic phenotype in HKCs. Herein, we identify alterations in TGF-β signaling that contribute to the observed fibrotic phenotype in HKCs. Methods: HCFs and HKCs were stimulated with TGF-β1, TGF-β2, or TGF-β3 isoforms (0.1 ng/mL) in the presence of a stable vitamin C derivative (0.5 mM) for 4 weeks. All samples were examined using RT–PCR and western blotting to quantify changes in the expressions of key TGF-β signaling molecules between HCFs and HKCs. Results: We found a significant downregulation in the SMAD6 and SMAD7 expressions by HKCs when compared to HCFs (p≤0.05). Moreover, stimulation of HKCs with any of the three TGF-β isoforms did not significantly alter the expressions of SMAD6 or SMAD7. HCFs also showed an upregulation in TGF-βRI, TGF-βRII, and TGF-βRIII following TGF-β3 treatment, whereas HKCs showed a significant two-fold downregulation. Conclusions: Overall, our data shows the decreased expressions of the regulatory SMADs SMAD6 and SMAD7 by HKCs contribute to the pathological ECM structure observed in KC, and TGF-β3 may attenuate this mechanism by downregulating the expression of the key profibrotic receptor, TGF-βRII. Our study suggests a significant role of altered regulation of TGF-β signaling in KC progression and that it may enable novel therapeutic developments targeting TGF-β receptor regulation. Molecular Vision 2015-05-21 /pmc/articles/PMC4443584/ /pubmed/26015770 Text en Copyright © 2015 Molecular Vision. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited, used for non-commercial purposes, and is not altered or transformed.
spellingShingle Research Article
Priyadarsini, Shrestha
McKay, Tina B.
Sarker-Nag, Akhee
Karamichos, Dimitrios
Keratoconus in vitro and the key players of the TGF-β pathway
title Keratoconus in vitro and the key players of the TGF-β pathway
title_full Keratoconus in vitro and the key players of the TGF-β pathway
title_fullStr Keratoconus in vitro and the key players of the TGF-β pathway
title_full_unstemmed Keratoconus in vitro and the key players of the TGF-β pathway
title_short Keratoconus in vitro and the key players of the TGF-β pathway
title_sort keratoconus in vitro and the key players of the tgf-β pathway
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443584/
https://www.ncbi.nlm.nih.gov/pubmed/26015770
work_keys_str_mv AT priyadarsinishrestha keratoconusinvitroandthekeyplayersofthetgfbpathway
AT mckaytinab keratoconusinvitroandthekeyplayersofthetgfbpathway
AT sarkernagakhee keratoconusinvitroandthekeyplayersofthetgfbpathway
AT karamichosdimitrios keratoconusinvitroandthekeyplayersofthetgfbpathway