Cargando…

Ultrastructural Changes in Human Trabecular Meshwork Tissue after Laser Trabeculoplasty

Purpose. To compare morphologic changes in human trabecular meshwork (TM) after selective laser trabeculoplasty (SLT) and argon laser trabeculoplasty (ALT). Design. Laboratory evaluation of ex vivo human eye TM after laser trabeculoplasty. Methods. Corneoscleral rims from human cadaver eyes were sec...

Descripción completa

Detalles Bibliográficos
Autores principales: SooHoo, Jeffrey R., Seibold, Leonard K., Ammar, David A., Kahook, Malik Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443779/
https://www.ncbi.nlm.nih.gov/pubmed/26064672
http://dx.doi.org/10.1155/2015/476138
_version_ 1782373053135585280
author SooHoo, Jeffrey R.
Seibold, Leonard K.
Ammar, David A.
Kahook, Malik Y.
author_facet SooHoo, Jeffrey R.
Seibold, Leonard K.
Ammar, David A.
Kahook, Malik Y.
author_sort SooHoo, Jeffrey R.
collection PubMed
description Purpose. To compare morphologic changes in human trabecular meshwork (TM) after selective laser trabeculoplasty (SLT) and argon laser trabeculoplasty (ALT). Design. Laboratory evaluation of ex vivo human eye TM after laser trabeculoplasty. Methods. Corneoscleral rims from human cadaver eyes were sectioned and treated with varying powers of either SLT or ALT. Specimens were examined using light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Results. TEM of SLT at all powers resulted in disrupted TM cells with cracked and extracellular pigment granules. SEM of SLT samples treated at high power revealed tissue destruction with scrolling of trabecular beams. SEM of ALT-treated tissue showed increasing destruction with exposure to higher power. The presence or absence of “champagne” bubbles during SLT did not alter the histologic findings. Conclusions. SLT-treated human TM revealed disruption of TM cells with cracked, extracellular pigment granules, particularly at higher treatment powers. Tissue scrolling was noted at very high SLT energy levels. ALT-treated tissue showed significant damage to both the superficial and deeper TM tissues in a dose-dependent fashion. Further studies are needed to guide titration of treatment power to maximize the IOP-lowering effect while minimizing both energy delivered and damage to target tissues.
format Online
Article
Text
id pubmed-4443779
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-44437792015-06-10 Ultrastructural Changes in Human Trabecular Meshwork Tissue after Laser Trabeculoplasty SooHoo, Jeffrey R. Seibold, Leonard K. Ammar, David A. Kahook, Malik Y. J Ophthalmol Research Article Purpose. To compare morphologic changes in human trabecular meshwork (TM) after selective laser trabeculoplasty (SLT) and argon laser trabeculoplasty (ALT). Design. Laboratory evaluation of ex vivo human eye TM after laser trabeculoplasty. Methods. Corneoscleral rims from human cadaver eyes were sectioned and treated with varying powers of either SLT or ALT. Specimens were examined using light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Results. TEM of SLT at all powers resulted in disrupted TM cells with cracked and extracellular pigment granules. SEM of SLT samples treated at high power revealed tissue destruction with scrolling of trabecular beams. SEM of ALT-treated tissue showed increasing destruction with exposure to higher power. The presence or absence of “champagne” bubbles during SLT did not alter the histologic findings. Conclusions. SLT-treated human TM revealed disruption of TM cells with cracked, extracellular pigment granules, particularly at higher treatment powers. Tissue scrolling was noted at very high SLT energy levels. ALT-treated tissue showed significant damage to both the superficial and deeper TM tissues in a dose-dependent fashion. Further studies are needed to guide titration of treatment power to maximize the IOP-lowering effect while minimizing both energy delivered and damage to target tissues. Hindawi Publishing Corporation 2015 2015-05-12 /pmc/articles/PMC4443779/ /pubmed/26064672 http://dx.doi.org/10.1155/2015/476138 Text en Copyright © 2015 Jeffrey R. SooHoo et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
SooHoo, Jeffrey R.
Seibold, Leonard K.
Ammar, David A.
Kahook, Malik Y.
Ultrastructural Changes in Human Trabecular Meshwork Tissue after Laser Trabeculoplasty
title Ultrastructural Changes in Human Trabecular Meshwork Tissue after Laser Trabeculoplasty
title_full Ultrastructural Changes in Human Trabecular Meshwork Tissue after Laser Trabeculoplasty
title_fullStr Ultrastructural Changes in Human Trabecular Meshwork Tissue after Laser Trabeculoplasty
title_full_unstemmed Ultrastructural Changes in Human Trabecular Meshwork Tissue after Laser Trabeculoplasty
title_short Ultrastructural Changes in Human Trabecular Meshwork Tissue after Laser Trabeculoplasty
title_sort ultrastructural changes in human trabecular meshwork tissue after laser trabeculoplasty
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443779/
https://www.ncbi.nlm.nih.gov/pubmed/26064672
http://dx.doi.org/10.1155/2015/476138
work_keys_str_mv AT soohoojeffreyr ultrastructuralchangesinhumantrabecularmeshworktissueafterlasertrabeculoplasty
AT seiboldleonardk ultrastructuralchangesinhumantrabecularmeshworktissueafterlasertrabeculoplasty
AT ammardavida ultrastructuralchangesinhumantrabecularmeshworktissueafterlasertrabeculoplasty
AT kahookmaliky ultrastructuralchangesinhumantrabecularmeshworktissueafterlasertrabeculoplasty