Cargando…

Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via curr...

Descripción completa

Detalles Bibliográficos
Autores principales: Adams, Peter G., Swingle, Kirstie L., Paxton, Walter F., Nogan, John J., Stromberg, Loreen R., Firestone, Millicent A., Mukundan, Harshini, Montaño, Gabriel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444833/
https://www.ncbi.nlm.nih.gov/pubmed/26015293
http://dx.doi.org/10.1038/srep10331
_version_ 1782373198133723136
author Adams, Peter G.
Swingle, Kirstie L.
Paxton, Walter F.
Nogan, John J.
Stromberg, Loreen R.
Firestone, Millicent A.
Mukundan, Harshini
Montaño, Gabriel A.
author_facet Adams, Peter G.
Swingle, Kirstie L.
Paxton, Walter F.
Nogan, John J.
Stromberg, Loreen R.
Firestone, Millicent A.
Mukundan, Harshini
Montaño, Gabriel A.
author_sort Adams, Peter G.
collection PubMed
description Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.
format Online
Article
Text
id pubmed-4444833
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-44448332015-06-01 Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns Adams, Peter G. Swingle, Kirstie L. Paxton, Walter F. Nogan, John J. Stromberg, Loreen R. Firestone, Millicent A. Mukundan, Harshini Montaño, Gabriel A. Sci Rep Article Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes. Nature Publishing Group 2015-05-27 /pmc/articles/PMC4444833/ /pubmed/26015293 http://dx.doi.org/10.1038/srep10331 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Adams, Peter G.
Swingle, Kirstie L.
Paxton, Walter F.
Nogan, John J.
Stromberg, Loreen R.
Firestone, Millicent A.
Mukundan, Harshini
Montaño, Gabriel A.
Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns
title Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns
title_full Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns
title_fullStr Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns
title_full_unstemmed Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns
title_short Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns
title_sort exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444833/
https://www.ncbi.nlm.nih.gov/pubmed/26015293
http://dx.doi.org/10.1038/srep10331
work_keys_str_mv AT adamspeterg exploitinglipopolysaccharideinduceddeformationoflipidbilayerstomodifymembranecompositionandgeneratetwodimensionalgeometricmembranearraypatterns
AT swinglekirstiel exploitinglipopolysaccharideinduceddeformationoflipidbilayerstomodifymembranecompositionandgeneratetwodimensionalgeometricmembranearraypatterns
AT paxtonwalterf exploitinglipopolysaccharideinduceddeformationoflipidbilayerstomodifymembranecompositionandgeneratetwodimensionalgeometricmembranearraypatterns
AT noganjohnj exploitinglipopolysaccharideinduceddeformationoflipidbilayerstomodifymembranecompositionandgeneratetwodimensionalgeometricmembranearraypatterns
AT strombergloreenr exploitinglipopolysaccharideinduceddeformationoflipidbilayerstomodifymembranecompositionandgeneratetwodimensionalgeometricmembranearraypatterns
AT firestonemillicenta exploitinglipopolysaccharideinduceddeformationoflipidbilayerstomodifymembranecompositionandgeneratetwodimensionalgeometricmembranearraypatterns
AT mukundanharshini exploitinglipopolysaccharideinduceddeformationoflipidbilayerstomodifymembranecompositionandgeneratetwodimensionalgeometricmembranearraypatterns
AT montanogabriela exploitinglipopolysaccharideinduceddeformationoflipidbilayerstomodifymembranecompositionandgeneratetwodimensionalgeometricmembranearraypatterns