Cargando…
Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels
Studies focused on understanding the role of matrix biophysical signals on cells, especially those when cells are encapsulated in hydrogels that are locally remodelled, are often complicated by appropriate methods to measure differences between the bulk and local material properties. From this persp...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445372/ https://www.ncbi.nlm.nih.gov/pubmed/25265090 http://dx.doi.org/10.1039/c4sm01365d |
_version_ | 1782373277033824256 |
---|---|
author | McKinnon, D. D. Domaille, D. W. Brown, T. E. Kyburz, K. A. Kiyotake, E. Cha, J. N. Anseth, K. S. |
author_facet | McKinnon, D. D. Domaille, D. W. Brown, T. E. Kyburz, K. A. Kiyotake, E. Cha, J. N. Anseth, K. S. |
author_sort | McKinnon, D. D. |
collection | PubMed |
description | Studies focused on understanding the role of matrix biophysical signals on cells, especially those when cells are encapsulated in hydrogels that are locally remodelled, are often complicated by appropriate methods to measure differences between the bulk and local material properties. From this perspective, stress-relaxing materials that allow long-term culture of embedded cells provide an opportunity to elucidate aspects of this biophysical signalling. In particular, rheological characterization of the stress relaxation properties allows one to link a bulk material measurement to local aspects of cellular functions by quantifying the corresponding cellular forces that must be applied locally. Here, embryonic stem cell-derived motor neurons were encapsulated in a well-characterized covalently adaptable bis-aliphatic hydrazone crosslinked PEG hydrogel, and neurite outgrowth was observed over time. Using fundamental physical relationships describing classical mechanics and viscoelastic materials, we calculated the forces and energies involved in neurite extension, the results of which provide insight to the role of biophysical cues on this process. |
format | Online Article Text |
id | pubmed-4445372 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-44453722015-05-27 Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels McKinnon, D. D. Domaille, D. W. Brown, T. E. Kyburz, K. A. Kiyotake, E. Cha, J. N. Anseth, K. S. Soft Matter Chemistry Studies focused on understanding the role of matrix biophysical signals on cells, especially those when cells are encapsulated in hydrogels that are locally remodelled, are often complicated by appropriate methods to measure differences between the bulk and local material properties. From this perspective, stress-relaxing materials that allow long-term culture of embedded cells provide an opportunity to elucidate aspects of this biophysical signalling. In particular, rheological characterization of the stress relaxation properties allows one to link a bulk material measurement to local aspects of cellular functions by quantifying the corresponding cellular forces that must be applied locally. Here, embryonic stem cell-derived motor neurons were encapsulated in a well-characterized covalently adaptable bis-aliphatic hydrazone crosslinked PEG hydrogel, and neurite outgrowth was observed over time. Using fundamental physical relationships describing classical mechanics and viscoelastic materials, we calculated the forces and energies involved in neurite extension, the results of which provide insight to the role of biophysical cues on this process. Royal Society of Chemistry 2014-11-14 2014-09-29 /pmc/articles/PMC4445372/ /pubmed/25265090 http://dx.doi.org/10.1039/c4sm01365d Text en This journal is © The Royal Society of Chemistry 2014 http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Chemistry McKinnon, D. D. Domaille, D. W. Brown, T. E. Kyburz, K. A. Kiyotake, E. Cha, J. N. Anseth, K. S. Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels |
title | Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels
|
title_full | Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels
|
title_fullStr | Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels
|
title_full_unstemmed | Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels
|
title_short | Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels
|
title_sort | measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445372/ https://www.ncbi.nlm.nih.gov/pubmed/25265090 http://dx.doi.org/10.1039/c4sm01365d |
work_keys_str_mv | AT mckinnondd measuringcellularforcesusingbisaliphatichydrazonecrosslinkedstressrelaxinghydrogels AT domailledw measuringcellularforcesusingbisaliphatichydrazonecrosslinkedstressrelaxinghydrogels AT brownte measuringcellularforcesusingbisaliphatichydrazonecrosslinkedstressrelaxinghydrogels AT kyburzka measuringcellularforcesusingbisaliphatichydrazonecrosslinkedstressrelaxinghydrogels AT kiyotakee measuringcellularforcesusingbisaliphatichydrazonecrosslinkedstressrelaxinghydrogels AT chajn measuringcellularforcesusingbisaliphatichydrazonecrosslinkedstressrelaxinghydrogels AT ansethks measuringcellularforcesusingbisaliphatichydrazonecrosslinkedstressrelaxinghydrogels |