Cargando…

Extracting Knowledge from Chemical Imaging Data Using Computational Algorithms for Digital Cancer Diagnosis

Fourier transform infrared (FTIR) spectroscopic imaging is an emerging microscopy modality for clinical histopathologic diagnoses as well as for biomedical research. Spectral data recorded in this modality are indicative of the underlying, spatially resolved biochemical composition but need computer...

Descripción completa

Detalles Bibliográficos
Autores principales: Tiwari, Saumya, Bhargava, Rohit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: YJBM 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445435/
https://www.ncbi.nlm.nih.gov/pubmed/26029012
_version_ 1782373283378757632
author Tiwari, Saumya
Bhargava, Rohit
author_facet Tiwari, Saumya
Bhargava, Rohit
author_sort Tiwari, Saumya
collection PubMed
description Fourier transform infrared (FTIR) spectroscopic imaging is an emerging microscopy modality for clinical histopathologic diagnoses as well as for biomedical research. Spectral data recorded in this modality are indicative of the underlying, spatially resolved biochemical composition but need computerized algorithms to digitally recognize and transform this information to a diagnostic tool to identify cancer or other physiologic conditions. Statistical pattern recognition forms the backbone of these recognition protocols and can be used for highly accurate results. Aided by biochemical correlations with normal and diseased states and the power of modern computer-aided pattern recognition, this approach is capable of combating many standing questions of traditional histology-based diagnosis models. For example, a simple diagnostic test can be developed to determine cell types in tissue. As a more advanced application, IR spectral data can be integrated with patient information to predict risk of cancer, providing a potential road to precision medicine and personalized care in cancer treatment. The IR imaging approach can be implemented to complement conventional diagnoses, as the samples remain unperturbed and are not destroyed. Despite high potential and utility of this approach, clinical implementation has not yet been achieved due to practical hurdles like speed of data acquisition and lack of optimized computational procedures for extracting clinically actionable information rapidly. The latter problem has been addressed by developing highly efficient ways to process IR imaging data but remains one that has considerable scope for progress. Here, we summarize the major issues and provide practical considerations in implementing a modified Bayesian classification protocol for digital molecular pathology. We hope to familiarize readers with analysis methods in IR imaging data and enable researchers to develop methods that can lead to the use of this promising technique for digital diagnosis of cancer.
format Online
Article
Text
id pubmed-4445435
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher YJBM
record_format MEDLINE/PubMed
spelling pubmed-44454352015-06-01 Extracting Knowledge from Chemical Imaging Data Using Computational Algorithms for Digital Cancer Diagnosis Tiwari, Saumya Bhargava, Rohit Yale J Biol Med Review Fourier transform infrared (FTIR) spectroscopic imaging is an emerging microscopy modality for clinical histopathologic diagnoses as well as for biomedical research. Spectral data recorded in this modality are indicative of the underlying, spatially resolved biochemical composition but need computerized algorithms to digitally recognize and transform this information to a diagnostic tool to identify cancer or other physiologic conditions. Statistical pattern recognition forms the backbone of these recognition protocols and can be used for highly accurate results. Aided by biochemical correlations with normal and diseased states and the power of modern computer-aided pattern recognition, this approach is capable of combating many standing questions of traditional histology-based diagnosis models. For example, a simple diagnostic test can be developed to determine cell types in tissue. As a more advanced application, IR spectral data can be integrated with patient information to predict risk of cancer, providing a potential road to precision medicine and personalized care in cancer treatment. The IR imaging approach can be implemented to complement conventional diagnoses, as the samples remain unperturbed and are not destroyed. Despite high potential and utility of this approach, clinical implementation has not yet been achieved due to practical hurdles like speed of data acquisition and lack of optimized computational procedures for extracting clinically actionable information rapidly. The latter problem has been addressed by developing highly efficient ways to process IR imaging data but remains one that has considerable scope for progress. Here, we summarize the major issues and provide practical considerations in implementing a modified Bayesian classification protocol for digital molecular pathology. We hope to familiarize readers with analysis methods in IR imaging data and enable researchers to develop methods that can lead to the use of this promising technique for digital diagnosis of cancer. YJBM 2015-06-01 /pmc/articles/PMC4445435/ /pubmed/26029012 Text en Copyright ©2015, Yale Journal of Biology and Medicine https://creativecommons.org/licenses/by-nc/3.0/This is an open access article distributed under the terms of the Creative Commons CC BY-NC license, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. You may not use the material for commercial purposes.
spellingShingle Review
Tiwari, Saumya
Bhargava, Rohit
Extracting Knowledge from Chemical Imaging Data Using Computational Algorithms for Digital Cancer Diagnosis
title Extracting Knowledge from Chemical Imaging Data Using Computational Algorithms for Digital Cancer Diagnosis
title_full Extracting Knowledge from Chemical Imaging Data Using Computational Algorithms for Digital Cancer Diagnosis
title_fullStr Extracting Knowledge from Chemical Imaging Data Using Computational Algorithms for Digital Cancer Diagnosis
title_full_unstemmed Extracting Knowledge from Chemical Imaging Data Using Computational Algorithms for Digital Cancer Diagnosis
title_short Extracting Knowledge from Chemical Imaging Data Using Computational Algorithms for Digital Cancer Diagnosis
title_sort extracting knowledge from chemical imaging data using computational algorithms for digital cancer diagnosis
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445435/
https://www.ncbi.nlm.nih.gov/pubmed/26029012
work_keys_str_mv AT tiwarisaumya extractingknowledgefromchemicalimagingdatausingcomputationalalgorithmsfordigitalcancerdiagnosis
AT bhargavarohit extractingknowledgefromchemicalimagingdatausingcomputationalalgorithmsfordigitalcancerdiagnosis