Cargando…
Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning
Although the prevalence of autism spectrum disorder (ASD) has risen sharply in the last few years reaching 1 in 68, the average age of diagnosis in the United States remains close to 4—well past the developmental window when early intervention has the largest gains. This emphasizes the importance of...
Autores principales: | Kosmicki, J A, Sochat, V, Duda, M, Wall, D P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445756/ https://www.ncbi.nlm.nih.gov/pubmed/25710120 http://dx.doi.org/10.1038/tp.2015.7 |
Ejemplares similares
-
Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism
por: Levy, Sebastien, et al.
Publicado: (2017) -
Use of machine learning for behavioral distinction of autism and ADHD
por: Duda, M, et al.
Publicado: (2016) -
Testing the accuracy of an observation-based classifier for rapid detection of autism risk
por: Duda, M, et al.
Publicado: (2014) -
Use of machine learning to shorten observation-based screening and diagnosis of autism
por: Wall, D P, et al.
Publicado: (2012) -
Crowdsourced validation of a machine-learning classification system for autism and ADHD
por: Duda, M, et al.
Publicado: (2017)