Cargando…

Light-regulated translational control of circadian behavior by eIF4E phosphorylation

The circadian (~24 h) clock is continuously entrained (reset) by ambient light so that endogenous rhythms are synchronized with daily changes in the environment. Light-induced gene expression is thought to be the molecular mechanism underlying clock entrainment. mRNA translation is a key step of gen...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Ruifeng, Gkogkas, Christos G., de Zavalia, Nuria, Blum, Ian D., Yanagiya, Akiko, Tsukumo, Yoshinori, Xu, Haiyan, Lee, Choogon, Storch, Kai-Florian, Liu, Andrew C., Amir, Shimon, Sonenberg, Nahum
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446158/
https://www.ncbi.nlm.nih.gov/pubmed/25915475
http://dx.doi.org/10.1038/nn.4010
Descripción
Sumario:The circadian (~24 h) clock is continuously entrained (reset) by ambient light so that endogenous rhythms are synchronized with daily changes in the environment. Light-induced gene expression is thought to be the molecular mechanism underlying clock entrainment. mRNA translation is a key step of gene expression, but how clock entrainment is controlled at the mRNA translation level is not understood. Here we report that a light- and circadian clock-regulated MAPK/MNK pathway leads to phosphorylation of the cap-binding protein eIF4E in the mouse suprachiasmatic nucleus (SCN) of the hypothalamus, the locus of the master circadian clock in mammals. Phosphorylation of eIF4E specifically promotes translation of Period (Per) 1 and 2 mRNAs and increases the abundance of basal and inducible PER proteins, which facilitates circadian clock resetting and precise timekeeping. Together, these results highlight a critical role for light-regulated translational control in the physiology of the circadian clock.