Cargando…

Can Butterflies Evade Fire? Pupa Location and Heat Tolerance in Fire Prone Habitats of Florida

Butterflies such as the atala hairstreak, Eumaeus atala Poey, and the frosted elfin, Callophrys irus Godart, are restricted to frequently disturbed habitats where their larval host plants occur. Pupae of these butterflies are noted to reside at the base of host plants or in the leaf litter and soil,...

Descripción completa

Detalles Bibliográficos
Autores principales: Thom, Matthew D., Daniels, Jaret C., Kobziar, Leda N., Colburn, Jonathan R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446329/
https://www.ncbi.nlm.nih.gov/pubmed/26016779
http://dx.doi.org/10.1371/journal.pone.0126755
Descripción
Sumario:Butterflies such as the atala hairstreak, Eumaeus atala Poey, and the frosted elfin, Callophrys irus Godart, are restricted to frequently disturbed habitats where their larval host plants occur. Pupae of these butterflies are noted to reside at the base of host plants or in the leaf litter and soil, which may allow them to escape direct mortality by fire, a prominent disturbance in many areas they inhabit. The capacity of these species to cope with fire is a critical consideration for land management and conservation strategies in the locations where they are found. Survival of E. atala pupae in relation to temperature and duration of heat pulse was tested using controlled water bath experiments and a series of prescribed fire field experiments. Survival of E. atala pupae was correlated to peak temperature and heat exposure in both laboratory and field trials. In addition, E. atala survival following field trials was correlated to depth of burial; complete mortality was observed for pupae at the soil surface. Fifty percent of E. atala survived the heat generated by prescribed fire when experimentally placed at depths ≥ 1.75cm, suggesting that pupation of butterflies in the soil at depth can protect from fatal temperatures caused by fire. For a species such as E. atala that pupates above ground, a population reduction from a burn event is a significant loss, and so decreasing the impact of prescribed fire on populations is critical.