Cargando…

Bitters: Time for a New Paradigm

In plant-based medical systems, bitter tasting plants play a key role in managing dyspepsia. Yet when it comes to defining their mechanism of activity, herbalists and pharmacologists are split between two theories: one involves cephalic elicited vagal responses while the other comprises purely local...

Descripción completa

Detalles Bibliográficos
Autores principales: McMullen, Michael K., Whitehouse, Julie M., Towell, Anthony
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446506/
https://www.ncbi.nlm.nih.gov/pubmed/26074998
http://dx.doi.org/10.1155/2015/670504
Descripción
Sumario:In plant-based medical systems, bitter tasting plants play a key role in managing dyspepsia. Yet when it comes to defining their mechanism of activity, herbalists and pharmacologists are split between two theories: one involves cephalic elicited vagal responses while the other comprises purely local responses. Recent studies indicate that bitters elicit a range of cephalic responses which alter postprandial gastric phase haemodynamics. Caffeine and regular coffee (Coffea arabica semen, L.) increase heart rate whereas gentian (Gentiana lutea radix, L.) and wormwood (Artemisia absinthium herba L.) increase tonus in the vascular resistance vessels. Following meals increased cardiac activity acts to support postprandial hyperaemia and maintain systemic blood pressure. The increased vascular tonus acts in parallel with the increased cardiac activity and in normal adults this additional pressor effect results in a reduced cardiac workload. The vascular response is a sympathetic reflex, evident after 5 minutes and dose dependent. Thus gentian and wormwood elicit cephalic responses which facilitate rather than stimulate digestive activity when postprandial hyperaemia is inadequate. Encapsulated caffeine elicits cardiovascular responses indicating that gastrointestinal bitter receptors are functionally active in humans. However, neither encapsulated gentian nor wormwood elicited cardiovascular responses during the gastric phase. These findings provide the platform for a new evidence-based paradigm.