Cargando…

Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells

Dihydroaustrasulfone alcohol (DA), an active compound firstly isolated from marine corals, has been reported to reveal anti-cancer and anti-inflammation activities. These reported activities of DA raised a possible application in anti-restenosis. Abnormal proliferation and migration of vascular smoo...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Pei-Chuan, Sheu, Ming-Jyh, Ma, Wei-Fen, Pan, Chun-Hsu, Sheu, Jyh-Horng, Wu, Chieh-Hsi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446617/
https://www.ncbi.nlm.nih.gov/pubmed/25988521
http://dx.doi.org/10.3390/md13053046
Descripción
Sumario:Dihydroaustrasulfone alcohol (DA), an active compound firstly isolated from marine corals, has been reported to reveal anti-cancer and anti-inflammation activities. These reported activities of DA raised a possible application in anti-restenosis. Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) and the stimulation of platelet-derived growth factor (PDGF)-BB play major pathological processes involved in the development of restenosis. Experimental results showed that DA markedly reduced balloon injury-induced neointima formation in the rat carotid artery model and significantly inhibited PDGF-BB-stimulated proliferation and migration of VSMCs. Our data further demonstrated that translational and active levels of several critical signaling cascades involved in VSMC proliferation, such as extracellular signal-regulated kinase/mitogen-activated protein kinases (ERK/MAPK), phosphatidylinositol 3-kinase (PI3K)/AKT, and signal transducer and activator of transcription (STAT), were obviously inhibited. In addition, DA also decreased the activation and expression levels of gelatinases (matrix metalloproteinase (MMP)-2 and MMP-9) involved in cell migration. In conclusion, our findings indicate that DA can reduce balloon injury-neointimal hyperplasia, the effect of which may be modulated through suppression of VSMC proliferation and migration. These results suggest that DA has potential application as an anti-restenotic agent for the prevention of restenosis.