Cargando…

Tight Junction Protein 1a regulates pigment cell organisation during zebrafish colour patterning

Zebrafish display a prominent pattern of alternating dark and light stripes generated by the precise positioning of pigment cells in the skin. This arrangement is the result of coordinated cell movements, cell shape changes, and the organisation of pigment cells during metamorphosis. Iridophores pla...

Descripción completa

Detalles Bibliográficos
Autores principales: Fadeev, Andrey, Krauss, Jana, Frohnhöfer, Hans Georg, Irion, Uwe, Nüsslein-Volhard, Christiane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446668/
https://www.ncbi.nlm.nih.gov/pubmed/25915619
http://dx.doi.org/10.7554/eLife.06545
Descripción
Sumario:Zebrafish display a prominent pattern of alternating dark and light stripes generated by the precise positioning of pigment cells in the skin. This arrangement is the result of coordinated cell movements, cell shape changes, and the organisation of pigment cells during metamorphosis. Iridophores play a crucial part in this process by switching between the dense form of the light stripes and the loose form of the dark stripes. Adult schachbrett (sbr) mutants exhibit delayed changes in iridophore shape and organisation caused by truncations in Tight Junction Protein 1a (ZO-1a). In sbr mutants, the dark stripes are interrupted by dense iridophores invading as coherent sheets. Immuno-labelling and chimeric analyses indicate that Tjp1a is expressed in dense iridophores but down-regulated in the loose form. Tjp1a is a novel regulator of cell shape changes during colour pattern formation and the first cytoplasmic protein implicated in this process. DOI: http://dx.doi.org/10.7554/eLife.06545.001