Cargando…
Few-layer bismuth selenides exfoliated by hemin inhibit amyloid-β(1–42) fibril formation
Inhibiting amyloid-β (Aβ) fibril formation is the primary therapeutic strategy for Alzheimer’s disease. Several small molecules and nanomaterials have been used to inhibit Aβ fibril formation. However, insufficient inhibition efficiency or poor metabolization limits their further applications. Here,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446900/ https://www.ncbi.nlm.nih.gov/pubmed/26018135 http://dx.doi.org/10.1038/srep10171 |
Sumario: | Inhibiting amyloid-β (Aβ) fibril formation is the primary therapeutic strategy for Alzheimer’s disease. Several small molecules and nanomaterials have been used to inhibit Aβ fibril formation. However, insufficient inhibition efficiency or poor metabolization limits their further applications. Here, we used hemin to exfoliate few-layer Bi(2)Se(3) in aqueous solution. Then we separated few-layer Bi(2)Se(3) with different sizes and thicknesses by fractional centrifugation, and used them to attempt to inhibit Aβ(1-42) aggregation. The results show that smaller and thinner few-layer Bi(2)Se(3) had the highest inhibition efficiency. We further investigated the interaction between few-layer Bi(2)Se(3) and Aβ(1-42) monomers. The results indicate that the inhibition effect may be due to the high adsorption capacity of few-layer Bi(2)Se(3) for Aβ(1−42) monomers. Few-layer Bi(2)Se(3) also decreased Aβ-mediated peroxidase-like activity and cytotoxicity according to in vitro neurotoxicity studies under physiological conditions. Therefore, our work shows the potential for applications of few-layer Bi(2)Se(3) in the biomedical field. |
---|