Cargando…

Real-time selective visual monitoring of Hg(2+) detection at ppt level: An approach to lighting electrospun nanofibers using gold nanoclusters

In this work, fluorescent gold nanocluster (AuNC) decorated polycaprolactone (PCL) nanofibers (AuNC*PCL-NF) for real time visual monitoring of Hg(2+) detection at ppt level in water is demonstrated. The resultant AuNC*PCL-NF exhibiting remarkable stability more than four months at ambient environmen...

Descripción completa

Detalles Bibliográficos
Autores principales: Senthamizhan, Anitha, Celebioglu, Asli, Uyar, Tamer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446990/
https://www.ncbi.nlm.nih.gov/pubmed/26020609
http://dx.doi.org/10.1038/srep10403
Descripción
Sumario:In this work, fluorescent gold nanocluster (AuNC) decorated polycaprolactone (PCL) nanofibers (AuNC*PCL-NF) for real time visual monitoring of Hg(2+) detection at ppt level in water is demonstrated. The resultant AuNC*PCL-NF exhibiting remarkable stability more than four months at ambient environment and facilitates increased accessibility to active sites resulting in improved sensing performance with rapid response time. The fluorescence changes of AuNC*PCL-NF and their corresponding time dependent spectra, upon introduction of Hg(2+), led to the visual identification of the sensor performance. It is observed that the effective removal of excess ligand (bovine serum albumin (BSA) greatly enhances the surface exposure of AuNC and therefore their selective sensing performance is achieved over competent metal ions such as Cu(2+), Ni(2+), Mn(2+), Zn(2+), Cd(2+), and Pb(2+) present in the water. An exceptional interaction is observed between AuNC and Hg(2+), wherein the absence of excess interrupting ligand makes AuNC more selective towards Hg(2+). The underlying mechanism is found to be due to the formation of Au-Hg amalgam, which was further investigated with XPS, TEM and elemental mapping studies. In short, our findings may lead to develop very efficient fluorescent-based nanofibrous mercury sensor, keeping in view of its stability, simplicity, reproducibility, and low cost.