Cargando…

Penalized Ordinal Regression Methods for Predicting Stage of Cancer in High-Dimensional Covariate Spaces

The pathological description of the stage of a tumor is an important clinical designation and is considered, like many other forms of biomedical data, an ordinal outcome. Currently, statistical methods for predicting an ordinal outcome using clinical, demographic, and high-dimensional correlated fea...

Descripción completa

Detalles Bibliográficos
Autores principales: Gentry, Amanda Elswick, Jackson-Cook, Colleen K, Lyon, Debra E, Archer, Kellie J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Libertas Academica 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447150/
https://www.ncbi.nlm.nih.gov/pubmed/26052223
http://dx.doi.org/10.4137/CIN.S17277
Descripción
Sumario:The pathological description of the stage of a tumor is an important clinical designation and is considered, like many other forms of biomedical data, an ordinal outcome. Currently, statistical methods for predicting an ordinal outcome using clinical, demographic, and high-dimensional correlated features are lacking. In this paper, we propose a method that fits an ordinal response model to predict an ordinal outcome for high-dimensional covariate spaces. Our method penalizes some covariates (high-throughput genomic features) without penalizing others (such as demographic and/or clinical covariates). We demonstrate the application of our method to predict the stage of breast cancer. In our model, breast cancer subtype is a nonpenalized predictor, and CpG site methylation values from the Illumina Human Methylation 450K assay are penalized predictors. The method has been made available in the ordinalgmifs package in the R programming environment.