Cargando…
Penalized Ordinal Regression Methods for Predicting Stage of Cancer in High-Dimensional Covariate Spaces
The pathological description of the stage of a tumor is an important clinical designation and is considered, like many other forms of biomedical data, an ordinal outcome. Currently, statistical methods for predicting an ordinal outcome using clinical, demographic, and high-dimensional correlated fea...
Autores principales: | Gentry, Amanda Elswick, Jackson-Cook, Colleen K, Lyon, Debra E, Archer, Kellie J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447150/ https://www.ncbi.nlm.nih.gov/pubmed/26052223 http://dx.doi.org/10.4137/CIN.S17277 |
Ejemplares similares
-
ordinalgmifs: An R Package for Ordinal Regression in High-dimensional Data Settings
por: Archer, Kellie J, et al.
Publicado: (2014) -
ordinalbayes: Fitting Ordinal Bayesian Regression Models to High-Dimensional Data Using R
por: Archer, Kellie J., et al.
Publicado: (2022) -
Obtaining insights from high-dimensional data: sparse principal covariates regression
por: Van Deun, Katrijn, et al.
Publicado: (2018) -
Adaptive penalization in high-dimensional regression and classification with external covariates using variational Bayes
por: Velten, Britta, et al.
Publicado: (2019) -
Selecting Spatial Scale of Covariates in Regression Models of Environmental Exposures
por: Grant, Lauren P., et al.
Publicado: (2015)