Cargando…
The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence
The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447345/ https://www.ncbi.nlm.nih.gov/pubmed/26020640 http://dx.doi.org/10.1371/journal.pone.0125312 |
_version_ | 1782373576095039488 |
---|---|
author | Ismail, Mohd Zamri Bin Haji Hodges, Matt D. Boylan, Michael Achall, Rajesh Shirras, Alan Broughton, Susan J. |
author_facet | Ismail, Mohd Zamri Bin Haji Hodges, Matt D. Boylan, Michael Achall, Rajesh Shirras, Alan Broughton, Susan J. |
author_sort | Ismail, Mohd Zamri Bin Haji |
collection | PubMed |
description | The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InR(DN) (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InR(DN) and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InR(DN) was targeted to neurons (elavGAL4/UAS-InR(DN)), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InR(DN)) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan. |
format | Online Article Text |
id | pubmed-4447345 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44473452015-06-09 The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence Ismail, Mohd Zamri Bin Haji Hodges, Matt D. Boylan, Michael Achall, Rajesh Shirras, Alan Broughton, Susan J. PLoS One Research Article The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InR(DN) (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InR(DN) and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InR(DN) was targeted to neurons (elavGAL4/UAS-InR(DN)), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InR(DN)) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan. Public Library of Science 2015-05-28 /pmc/articles/PMC4447345/ /pubmed/26020640 http://dx.doi.org/10.1371/journal.pone.0125312 Text en © 2015 Ismail et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ismail, Mohd Zamri Bin Haji Hodges, Matt D. Boylan, Michael Achall, Rajesh Shirras, Alan Broughton, Susan J. The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence |
title | The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence |
title_full | The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence |
title_fullStr | The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence |
title_full_unstemmed | The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence |
title_short | The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence |
title_sort | drosophila insulin receptor independently modulates lifespan and locomotor senescence |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447345/ https://www.ncbi.nlm.nih.gov/pubmed/26020640 http://dx.doi.org/10.1371/journal.pone.0125312 |
work_keys_str_mv | AT ismailmohdzamribinhaji thedrosophilainsulinreceptorindependentlymodulateslifespanandlocomotorsenescence AT hodgesmattd thedrosophilainsulinreceptorindependentlymodulateslifespanandlocomotorsenescence AT boylanmichael thedrosophilainsulinreceptorindependentlymodulateslifespanandlocomotorsenescence AT achallrajesh thedrosophilainsulinreceptorindependentlymodulateslifespanandlocomotorsenescence AT shirrasalan thedrosophilainsulinreceptorindependentlymodulateslifespanandlocomotorsenescence AT broughtonsusanj thedrosophilainsulinreceptorindependentlymodulateslifespanandlocomotorsenescence AT ismailmohdzamribinhaji drosophilainsulinreceptorindependentlymodulateslifespanandlocomotorsenescence AT hodgesmattd drosophilainsulinreceptorindependentlymodulateslifespanandlocomotorsenescence AT boylanmichael drosophilainsulinreceptorindependentlymodulateslifespanandlocomotorsenescence AT achallrajesh drosophilainsulinreceptorindependentlymodulateslifespanandlocomotorsenescence AT shirrasalan drosophilainsulinreceptorindependentlymodulateslifespanandlocomotorsenescence AT broughtonsusanj drosophilainsulinreceptorindependentlymodulateslifespanandlocomotorsenescence |