Cargando…

Insights into Transcriptomes of Big and Low Sagebrush

We report the sequencing and assembly of three transcriptomes from Big (Artemisia tridentata ssp. wyomingensis and A. tridentata ssp. tridentata) and Low (A. arbuscula ssp. arbuscula) sagebrush. The sequence reads are available in the Sequence Read Archive of NCBI. We demonstrate the utilities of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Huynh, Mark D., Page, Justin T., Richardson, Bryce A., Udall, Joshua A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447352/
https://www.ncbi.nlm.nih.gov/pubmed/26020526
http://dx.doi.org/10.1371/journal.pone.0127593
Descripción
Sumario:We report the sequencing and assembly of three transcriptomes from Big (Artemisia tridentata ssp. wyomingensis and A. tridentata ssp. tridentata) and Low (A. arbuscula ssp. arbuscula) sagebrush. The sequence reads are available in the Sequence Read Archive of NCBI. We demonstrate the utilities of these transcriptomes for gene discovery and phylogenomic analysis. An assembly of 61,883 transcripts followed by transcript identification by the program TRAPID revealed 16 transcripts directly related to terpene synthases, proteins critical to the production of multiple secondary metabolites in sagebrush. A putative terpene synthase was identified in two of our sagebrush samples. Using paralogs with synonymous mutations we reconstructed an evolutionary time line of ancient genome duplications. By applying a constant mutation rate to the data we estimate that these three ancient duplications occurred about 18, 34 and 60 million years ago. These transcriptomes offer a foundation for future studies of sagebrush, including inferences in chemical defense and the identification of species and subspecies of sagebrush for restoration and preservation of the threatened sage-grouse.